# Quantitative Structure-Property Relationship (QSPR) Study of <sup>17</sup>O Carbonyl Chemical Shifts in Substituted Benzaldehvdes

Rudolf Kirali and Márcia Miguel Castro Ferreira, rudolf@igm.unicamp.br. marcia@igm.unicamp.br. http://lgta.igm.unicamp.br

Laboratório de Quimiometria Teórica e Aplicada (LQTA), Instituto de Química, Universidade Estadual de Campinas, Campinas SP, 13083-970, Brazil

### THE OBJECTIVES OF THIS WORK

- 1) To develop a fast and simple QSPR methodology for prediction of <sup>17</sup>O carbonyl chemical shifts in substituted benzaldehydes, comparable to the empirical model of Li&Li (LL)
- 2) To show that this methodology is based on well understandable chemical concepts and that the QSPR models can be validated unlike the LL model
- 3) To use the QSPR models for general substituted benzaldehydes, in advance of the LL model

### THE STORY

# 1 The empirical Li&Li (LL) model1:

Empirical equation for calculation of 170 NMP chemical shifts in 50 benzaldehydes (Figure 1), based on contributions  $\underline{A}$  o individual o-, o'-, m-, m'- and p-positioned substituents and correction C for polar solvents

 $\delta_{rr}$  / ppm = 564.0 +  $\Delta \alpha$  +  $\Delta \alpha$ ' +  $\Delta m$  +  $\Delta m$ ' +  $\Delta n$  + C

 $M = \Delta m + \Delta m'$  $Q = \Delta q + \Delta q^{2}$  $P = \Lambda n$ 

 $\Delta o = \Delta o' = \Delta m = \Delta m' = \Delta p = 0$  for H at positions o, o', m, m' and p

C = -14.7 ppm for **24**. **34-40**. **47-50**. otherwise C = 0.0 ppm

<sup>1</sup>Li LD, Li LS (2004) Magn Reson Chem 42:977

### New OSPR methodology

1)Substituted benzaldehydes (training set: 50, Fig. 1; prediction set: 10, Fig. 2) were modeled and optimized at semi-empirical PM3 level. 2) Various global and local molecular descriptors of electronic and

- ric nature were generated. 3) Variable selection was performed for PLS. PCR and MLR models
- (autoscalled data) which were validated by leave-one crossvalidation and additionally externally validated
- 4) The models were compared with the LL model and used to
- predict <sup>17</sup>O carbonyl shifts in the prediction set 5) Additional exploratory analysis (PCA and HCA) and data mining
- in the Cambridge Structural Database (CSD) were performed to rationalize the relationships among the samples and variables.

# QSPR models versus LL model:

8

- -the same prediction power for the training set as of the LL model -better applicable for more general data sets than the LL model -can be validated and the LL cannot -all descriptors with clear chemical background, contrary to the LL model
- -fast and simple methodology, does not need substituent constants

#### Selected molecular descriptors र्ष् र् र् र् र् Ą $\overleftarrow{Q}$ ð 1) E<sub>co</sub> – C<sub>c</sub>-C<sub>o</sub> nuclear-nuclear repulsion energy $\widetilde{Q}$ 200 - electrostatic potential-based partial atomic charge of the carbonvl oxvgen O 3) $\sigma_a$ – standard deviation of the six C-C bond lengths in the benzene fragment 4) $d = C \cdot C$ bond length л \*\*\*\* 5) Q<sub>C2</sub>mul – Mulliken partial atomic charge of C<sub>2</sub> Ş Table 1. Selected molecular descrip ars for benzaldelrydes 1-50 $\begin{array}{c} \hline e_{2,2}(x) \\ \hline e_{2,2}(x) \\$ δ<sub>ers</sub>/ppn 563.2 561.4 576.9 5 2.m dcv4A L484 L481 L481 L481 L481 L481 L481 L485 L485 L485 L485 L485 L485 L485 L485 L485 L486 L485 L486 L487 L486 L487 L486 L487 L486 L487 L487 L487 L487 L471 L472 L471 L472 L473 L474 L473 1/273000 -0.2011 -0.2014 -0.2014 -0.2014 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2105 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.1808 -0.1808 -0.1808 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 -0.2104 </tabr> 4 4 4 4 4 4 ď, $\begin{array}{c} u_{-0.552}\\ u_{-0.510}\\ u_{-0.510}\\$ 0.003 0.004 0.003 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 526.9 545.7 545.7 545.7 545.7 545.7 545.7 545.5 545.5 555.0 555.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 551.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 5555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 \*\*\*\* \* \* \* \* \* \* \* \* \* Figure 3. Correlation of experimental <sup>17</sup>O NMR shifts with independen variables from the LL model (upper plots) and calculated in this work HC CON (rower procs). Samples with (lower shifts) and without (higher shifts) internal -HC=O ... HO- hydrogen bond are separated by a dashed horizontal line in all plots 6 Table 2. Correlation matrix including experi l shifts and lected molec -Em -0.911 0.791 .0.997 .0.912 000 0.920 a) 797 .0.803 ~ 1 Q 0.916 0~ā..... Figure 2 Substituted benzaldebydes 51-60 (prediction set)

### **QSPR MODELS**

q

Table | Produced

A. Sata Market Marke

\*\*\*\*\*\*\*\*\*\*

14



against calculated <sup>17</sup>O NMR shifts as obtained from PLS (left), Figure 4. Experimental against calculated <sup>17</sup>O NMR shifts as obtained from PLS (left), PCR (middle) and MLR (right) QSPR model. Solid squares account for the samples from ternal validation set. The dashed line separates samples with internal -HC=O the c en bond from those without it

### Table 3. Regression models (PLS, PCR, MLR) and the Li-Li empirical model (LL) with basic statistics and regression coefficients

Model PCs(%)<sup>a</sup> SEV<sup>b</sup> SEP<sup>c</sup>  $Q^{d} = R^{e} < \Delta >^{\epsilon} N_{d}^{\epsilon} = \mathcal{E}_{cc}^{h} = \mathcal{Q}_{coep}^{h} = \sigma_{d}^{h}$ PLS 2(96.1) 9.4 8.8 0.942 0.953 6.6 12 -0.106 0.239 -0.359 0.150 0.154 9.3 8.8 0.944 0.953 6.6 12 -0.127 0.225 -0.359 0.131 0.165 PCR 2(96.2) MER 5(100) 9.8 8.3 0.939 0.961 5.5 11 1.395 0.173 -0.360 1.731 0.131 - 0.975 4.3 8 LL. 

| No. 1    | ÷.,            | 10.0             | Ac                      | Sec.          | - e.,                   | × .                 | 10                                                                                                      |                                       |                            |  |  |
|----------|----------------|------------------|-------------------------|---------------|-------------------------|---------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|--|--|
| 1.7      | 267.8          | 26               | 251.2                   | 5A,7          | 2610                    | D S                 |                                                                                                         |                                       |                            |  |  |
| 2.8      | 461 *          | 2.4              | 561.8                   |               | 66° 0                   |                     |                                                                                                         |                                       |                            |  |  |
| 30.8     | 547.6          | 28.7             | 511.9                   | 15.6          | 540.4                   | 18.5                |                                                                                                         | External                              | validation                 |  |  |
| 12.0     | 50.1           | 16.9             | 533.0                   | 6.2           | 532.8                   | 0.6                 |                                                                                                         |                                       |                            |  |  |
| 15       | Ruit           |                  | 519.1                   | - 14          |                         | £.                  |                                                                                                         |                                       |                            |  |  |
| - 11 - I | 1000           |                  | Stars                   | - 24          | 268.9                   | 0.0                 |                                                                                                         |                                       |                            |  |  |
| 0.2      | 5 0 2          |                  | 2.52                    | - 11          | 2.12                    | 12                  | Table 5                                                                                                 | External val                          | lidation of the r          |  |  |
|          | 5015           | 10.0             | 200.2                   |               | 2                       |                     | 1 4004 0                                                                                                |                                       | ounder of the last         |  |  |
| 1.1      | 107            | 1.1              |                         |               | 2410                    | 0.0                 |                                                                                                         |                                       |                            |  |  |
| - M      | 14.1.4         |                  | 10.2                    |               | 175.0                   | 6.0                 |                                                                                                         |                                       |                            |  |  |
| 1.0      | No. 1          | 1.0              | 5.04 7                  |               | 510.1                   | 12                  | N9.                                                                                                     | a., ppm                               | - 8 <sub>013</sub> /ppm 76 |  |  |
| 12       | 543.1          | 11               | 44.7.7                  | - 20          | 544.5                   | 14                  |                                                                                                         |                                       |                            |  |  |
| - e      | 601 -          | 1.0              | 559.0                   | - 114         | 176.0                   | 68                  | 4                                                                                                       | 532.8                                 | 543.9                      |  |  |
| 16       | 469.7          | 10               | 578.1                   | 1.9           | \$74.0                  | 0.6                 |                                                                                                         |                                       |                            |  |  |
| 0.2      | 473            |                  | 100                     | - 52          | 174.0                   | 0.0                 | 5                                                                                                       | 545.7                                 | 550.4                      |  |  |
| - 12 -   | 1114           | 12               | 1.10                    | 16            | 110.1                   | 15                  |                                                                                                         |                                       |                            |  |  |
| 6.5      | 1111           |                  | 171.8                   | 10            | 110.5                   | 0.0                 | 10                                                                                                      | 590.1                                 | 580.3                      |  |  |
| - iii -  | 9/2.1          | 11               | 104.4                   | 2.0           | 158.1                   | DB                  |                                                                                                         | 1000                                  | 100.0                      |  |  |
| 11.3     | 5er. 5         | 11.6             | 65g T                   | 4.4           | 56.1.1                  | \$2                 | 12                                                                                                      | 505.8                                 | 507.2                      |  |  |
| 15       | 510.1          | 12               | 571.8                   | 2.7           | 577.0                   | 15                  |                                                                                                         | 200200                                | 2007 IB                    |  |  |
| 67       | 559.2          | 63               | 561.8                   | 4.2           | 566.0                   | 6.6                 | 13                                                                                                      | 665.0                                 | 642.2                      |  |  |
| 1.0      | 201.2          | 1.2              | 56 ji II                | 4.7           | 561.5                   | 2.2                 | 1.5                                                                                                     | 20270                                 | 794.4                      |  |  |
| 2.0      | 210.1          | 2.4              | 124.3                   | 6.2           | 24.0.0                  | 1.4                 |                                                                                                         | A 400 A                               | 173.0                      |  |  |
| 26       | 510.6          | 56               | 511.2                   | 5.0           | 915.6                   | 0.6                 | 17                                                                                                      | 569.3                                 | 212.2                      |  |  |
| 15.6     | .906.9         | 15.9             | 318.6                   | 12.2          | 922.4                   | 0-                  |                                                                                                         | 1711                                  | 171.0                      |  |  |
| - 72     | 3198           |                  | 218.0                   | - 22          | 2046                    |                     | 21                                                                                                      | 2/4.2                                 | 2/1/2                      |  |  |
| 67       | 208.2          |                  | 104.4                   | 6.5           | 214.5                   | 0.0                 |                                                                                                         |                                       |                            |  |  |
| 3.5      | 208.1          |                  | 268.8                   | 2.9           | 538.                    | 33                  | 22                                                                                                      | 566.0                                 | 559.1                      |  |  |
| 10       | 215            | 10               | 214.8                   | 2.8           | 212.6                   |                     |                                                                                                         |                                       |                            |  |  |
| 1.9      | 1111           |                  | \$12.0                  | 2.9           | ARK A                   | 10                  | 25                                                                                                      | 516.2                                 | 511.0                      |  |  |
| - 12     | 4111           | 1.7              |                         |               | 631.0                   |                     |                                                                                                         |                                       |                            |  |  |
| - 22 -   | in a           |                  | 20 C                    |               | 60.14                   | - 11                | 49                                                                                                      | 517.0                                 | 521.3                      |  |  |
| 12       | 111.0          | 1.1              |                         |               |                         | 12                  |                                                                                                         |                                       |                            |  |  |
| - 14     | 1111           |                  | 1100                    | 1.0           |                         | 11                  | Model                                                                                                   | PCs/%69                               | SEV <sup>5</sup>           |  |  |
| - 67     | A16 m          |                  | 514.0                   | 10            | 4a* 1                   | 124                 |                                                                                                         | 1.0.00.000                            |                            |  |  |
| - 61     | 518.0          |                  | 515.6                   | 14            | 699.0                   | 21                  | DIE                                                                                                     | 2(06.1)                               | 10.2                       |  |  |
| 4.4      | 412.4          | 51               | 511.7                   | 1.2           | 614.9                   | 6.9                 | PLO                                                                                                     | 7(30.1)                               | 10.2                       |  |  |
| 1.1      | 511.8          | 1.2              | 512.4                   | 4.4           | 539.9                   | - 11                | B-000                                                                                                   | ALC: 41                               | 10.0                       |  |  |
| 1.5      | 455.3          | 5.3              | 5111                    | 41            | 510.4                   | ÷.                  | PUR                                                                                                     | 2(96.2)                               | 10.0                       |  |  |
| 24.8     | 562.1          | 22.9             | 552.5                   | 22.5          | 579.0                   | 6.10                | 1.01.01                                                                                                 | 110.000                               |                            |  |  |
| 2.9      | 519.0          | 6.0              | 568.0                   | 4.1           | 5414                    | 21.6                | MUR                                                                                                     | 5(100)                                | 11.0                       |  |  |
| 2.8      | 518.0          | 38               | 546.1                   | 1.1           | 513.1                   | 11                  |                                                                                                         |                                       |                            |  |  |
| 6.9      | 247 L          | ÷ 1              | 7.17.1                  | 11.1          | 548.5                   | 19.4                | (Namber                                                                                                 | r of used prim                        | cipal component            |  |  |
| 41       | 447.9          | 11               | 559.1                   | 4.7           | 149.1                   | 1.5                 | predictio                                                                                               | on. "Correlatio                       | on coefficient of          |  |  |
| 6.       | 5173           | 10.7             | 513.5                   | 1.5           | 517.9                   | 61                  | Accistic                                                                                                | a thingher of                         | Committee with or          |  |  |
| 13.4     | 316 T          | 11.7             | 218.5                   | 53.3          | 720.1                   | 18.4                | serveron, systember of sampoos with av                                                                  |                                       |                            |  |  |
| 19       | 400.4          | 4.9              | 44.8 K                  | 2.2           | 416.1                   | 0.6                 | tor selec                                                                                               | for selected variables Son Queen 6a d |                            |  |  |
| 87       | 521.5          | 85               | 522.7                   | 8.°           | \$26.9                  | 0.9                 |                                                                                                         |                                       |                            |  |  |
|          | 516 °<br>521 5 | 11."<br>49<br>85 | 511,3<br>514,8<br>522 * | 80<br>11<br>K | 720.1<br>436.1<br>726.9 | 18.4<br>0.6<br>13.9 | deviation. Overhead of samples with a<br>for selected variables $\mathcal{E}_{2D}$ $Q_{Dass}, \Phi_0$ d |                                       |                            |  |  |

10

# External validation of the regression models

Table 5. External validation of the regression models with basic statis

| No.   | δ <sub>ep</sub> /ppm | δ <sub>PL2</sub> /ppm | %Accoppm | Spen/ppm | %decs/ppm | S <sub>16.8</sub> /ppm | %Ases/ppm         |
|-------|----------------------|-----------------------|----------|----------|-----------|------------------------|-------------------|
| 4     | 532.8                | 543.9                 | 12.5     | 543.9    | 12.5      | 538.9                  | 6.9               |
| 5     | 545.7                | 550.4                 | 5.3      | 550.3    | 5.2       | 549.0                  | 3.7               |
| 10    | 590.1                | 580.3                 | 11.1     | 580.5    | 10.8      | 581.9                  | 9.3               |
| 12    | 505.8                | 507.2                 | 1.6      | 507.3    | 1.7       | 506.1                  | 0.3               |
| 13    | 555.0                | 562.2                 | 8.1      | 561.9    | 7.8       | 562.8                  | 8.8               |
| 17    | 569.3                | 572.9                 | 4.1      | 572.9    | 4.1       | 570.6                  | 1.5               |
| 21    | 574.5                | 571.2                 | 3.7      | 570.7    | 4.3       | 571.6                  | 3.3               |
| 22    | 566.0                | 559.1                 | 7.8      | 559.2    | 7.7       | 560.8                  | 5.9               |
| 25    | 516.2                | 511.0                 | 5.9      | 511.0    | 5.9       | 511.0                  | 5.9               |
| 49    | 517.0                | 521.3                 | 4.9      | 521.2    | 4.7       | 515.6                  | 1.6               |
| Model | PCs(%)*              | SEV <sup>6</sup>      | SEP      | $Q^4$    | R'        | < 4>1                  | $N_{\Lambda}^{f}$ |
| PLS   | 2(96.1)              | 10.2                  | 9.4      | 0.934    | 0.948     | 6.8                    | 11                |
| PCR   | 2(96.2)              | 10.0                  | 9.4      | 0.935    | 0.947     | 6.9                    | 13                |
| MIR   | \$(100)              | 11.0                  | 9.1      | 0.924    | 0.955     | 5.9                    | 11                |

PCR

 $\delta = 986.390 - 9.298 \, E_{\rm C2} + 158.568 \, Q_{\rm Cup} - 3189.821 \, \sigma_{\rm d} + 555.309 \, d_{\rm C2} = 74.429 \, Q_{\rm Climit}$ 

MLR:

 $\delta = -22814.206 + 102.528 E_{\odot} + 121.992 Q_{\rm cup} - 3194.259 \sigma_s + 7338.557 d_{\odot} + 58.967 Q_{\rm class}$ 

descriptor

.0.892

-0.891

0.907

0.892

A. Joon

572,4 605,5 484,9

590.0

0.912 0.927

änskeom änskoum

568.0 590.7 503.7 566.6 587.0 310.5 579.5

577.6

496.4 503.0 548.5 511.8 497.0 505.7 552.6 514.8



Figure 5. Scores plot (left) with two clusters (left top) and subclusters (bottom) and HCA dendogram for samples (right). Clusters I and II contain samples with and withouth the internal hydrogen bond, respectively.

PC1 - related to cumulative electron withdrawal/donation effects felt by the carbonyl oxygen PC2 - related to variations in the benzaldehyde heteroaromatic charac



Figure 6. Loading plots (top) and HCA dendogram for variables (bottom) for the training set variables (left) and modified training set (with negative variables  $-d_{\rm CCT} - Q_{\rm Ossip}$  and  $-Q_{\rm Camut}$  right).



Figure 7. Relationships between structural variables demonstrating electron delocalization in substituted benzaldehydes. Left top: Bond length-bond order relationship for interaction of the carbomy oxygen with the closest o-hydrogen or closest atom from the o-substituent. Relationships between bond lengths G=O and C<sub>7</sub>-C<sub>6</sub> (right top), C=O and mean C<sub>7</sub>-C<sub>6</sub> (right top), C=O and mean C<sub>7</sub>-C<sub>6</sub> (right top), C=O and mean C<sub>7</sub>-C<sub>6</sub> (right top), C=O and control to the carbomy and C<sub>7</sub>-C<sub>6</sub> and the series of the carbomy and C<sub>7</sub>-C<sub>6</sub> and the control to the c

### ACKNOWLEDGEMENT: FAPESP

# 12 Proposed QSPR models PLS

**OSPR** and LL predictions

-0.586

Table 6. Molecular descriptors and predicted 110 NMR shifts for benzaldehydes 51-66

-0.132 568.1 591.0 503.7

-0.132 -0.176 -0.324

-0.197

.0 276 1966 106.1 407.0

ilsa Anone

578.1

503.1 518.2 512.0

deriÅ

1.487 1.491 1.471 1.489

a/A

0.008 0.002 0.011

0.004

-683.413 -7.762  $E_{\odot 2} + 168.153 Q_{coop}$  -3188.046  $\sigma_4 + 635.022 d_{\odot 2} + 69.290 Q_{c2n,d}$ 

11

Ne

55 54 57 58 59 172.743 .0 \$10 0.016

122.459 122.196 123.426

122.358 -0.444

122.323 -0.443 0.007 1.489 1.473 -0.255 \$65.0 561.4 563.3

123.262 123.212 122.645 123.276 -0.519 -0.570 -0.510 -0.565 0.016 0.013 0.006 0.010 1.473 1.471 1.481 1.473 -0.326 -0.332 -0.332 -0.336