Quantitative relationships between β-lactam molecular properties and

B-lactam/AcrAB-ToIC complex geometry as determinants of MDR efflux

Márcia Miguel Castro Ferreira and Rudolf Kirali. marcia@jam.unicamp.br. rudolf@jam.unicamp.br. http://lgta.jam.unicamp.br Laboratório de Quimiometria Teórica e Aplicada (LQTA). Instituto de Química. Universidade Estadual de Campinas. Campinas SP. 13084-971. Brazil

THE OBJECTIVES OF THIS WORK

1) To predict the position and orientation of 16 8-lactam antibiotics in the central cavity of the multidrug efflux pump AcrB (a component of AcrAB-TolC membrane transporter) that exists in several Gramnegative bacteria 🗲 using only known molecular structures and calculated properties of drugs (8-lactams and four organic dves: degualinium, ethidium, ciprofloxacin, rhodamine 6G) and protein-drug (AcrB-organic dyes) complexes → no protein-drug complex geometry optimizations nor molecular dynamics simulations were berformed:

2) To show that the B-lactams and the organic dyes, although structurally diverse, have properties in common that are responsible for their active efflux:

3) To use this similarity and the AcrB-organic dye complexes to predict AcrB-B-lactam geometry and to rationalize it 🗲 Quantitative Drug Structure - Complex Geometry Relationships + Exploratory Analysis.

A): 3D & schematic representation of the AcrAB-ToIC pump in *E*, coli, The two main drug efflux mechanisms start in the periplasm and cytoplasm. B), C): Blue, r and green AcrB protomers around the symmetry axis m. B). C): Blue, red

5

6

1

13

2

AcrB-mediated drug efflux from a Gram-negative cell in steps I - VII. Hydrophilic/lipophilic orientation of an amphiphilic drug is also visible. Conserved motifs, salt bridges and peptide movements are marked with special symbols. The efflux mechanism consists of a series of allosteric effects initiated by proton influx and contined by disruption of salt bridges and hydrogen bonds, changes in pump conformation, opening of efflux channels, drug binding in the central cavity and their extrusion through the pores and ToiC.

ntion of the 3D structure of trimmers TolC (PDB: 1EK9, space group *R*3. V. Koronakis *et al., Nature* 305, 2000, 914) and AcrB (PDB: 1IWG, space group *R*32. S. Murakami *et al., Nature* 419, 2002, 587).

ArrAB-TOC substrates: β-lactam antibiotics (1-16) with atomic numbering, dequalinium (17), ciprofloxacin (18), ethidium (19) and rhodamine 6G (20).

Productions

β
β
coope
unwarded)

0.926
0.074
0.15
6.2
n.5

0.927
0.019
0.15
6.2
n.5
n.5

0.971
0.019
0.15
6.2
n.5
n.5
n.5

0.981
0.017
0.04
n.15
0.5
n.6
n.6<

Barnester, a. A. e. regress the effective case 1.3 degress of the regression of of essential terrapity. Transl. Re-ended values of 176: 17400 (Sec.).

tion of all class from expression wave-tradies. If F is 1-85, as obtained from could distance in brackets are green.

10.0.171 14.707

0.932 0.168 2.10 0.923 0.175 1.55 0.888 0.112 1.76

PREDICTION OF &-LACTAM POSITION AND ORIENTATION IN THE CENTRAL CAVITY OF AcrB

Symbol	Name and description	Natures	Ongn*	- Ket (
14	relative molecular mass	steric	compet	pw, tw
4	1st principal moment of inertia (around axis X)	steric	comput	9W, 1W
54	2nd principal moment of inertia (around axis Y)	steric	comput	pw, tw
- 4	3rd principal moment of inertia (around axis Z)	steric	comput	pw, tw
in.	ratio between the principal moments I ₂ / I ₄	ateric	comput	CW.
44	ratio between the principal moments I_0 / I_0	steric	comput	CW.
Sar .	ratio between the principal moments I_2 / S_2	sterio	comput	tw
Sa.	molecular area projected on the YZ plane (along X axis, in the CPK molecular model)	steric	molgrp	tw
S1.	ratio between the area S ₀ and the area of the YZ face of the molecular bax defined by the farthest CPK spheres (in the CPK molecular model), expressed as %	steric	molgrp	tw
a.	molecular polarizability	electron	comput	pw, tw
(B)	absolute 2nd-order molecular polarizability p	electron	compati	pw, tw
IB.I	absolute X component of B	electron	comput	pw, tw
Y	3rd-order molecular nolarizability	electron	comput	OW, IW
Ġ,	X component of malecular dipole moment	electron	comput	128.00
D.	Y component of male cular skpole moment	electron	comot	OW, IW
6	Z comparent of malerular dipale marrent	electron	COTOFIE	tray, but
100	surface malecular density projected on the YZ plane, defined as N/S, where N is the number of atoros	steric	molgrp	tw
Δ_1	the length of the molecular box along the axis X (in the CPK molecular made).	steric	mojšta	tw
Δ12	the width(Y)/height(Z) ratio (of the YZ face of the molecular here in the CPK molecular model)	steric	molgrp	tw
Wee.	mommum of (X coordinate ± xdW radius)	steric	COTORE	tw/
d'm	difference between the maximum and minimum of (Y	steric	COTTONE	tw/
	coardinate + w(W radius)			
¥	ratio between the Wm and Wm differences	steric	COTTAL	tw/
Âŋ	area of the XY face of the molecular box defined by the minimum and maximum atomic coordinates	ateric	comput	tw
$\Lambda_{\gamma 1}$	area of the YZ face of the molecular but defined by the minimum and meximum starmic coordinates	steric	comput	tw
$A_{\rm eps}$	area of the molecular box defined by the minimum and maximum atomic coardinates	steric	comput	tw
$\Delta_{\rm HY}$	ratio between the X and Y edges of the molecular box defined by the maximum and maximum atomic coordinates	steric	control	tw
$\Delta_{\mathbf{s}\mathbf{s}}$	ratio between the X and Z edges of the molecular bux defined by the minimum and maximum atomic	steric	comput	tw
Δ_{yu}	ratio between the Y and Z edges of the molecular ban defined by the movement and maximum atomic	steric	combre	tw

ertsa (around azus Z)	sterac	control	pw, tw			Dr.du 1	C (10)	TT (10)	rend (res)
maments I ₂ / I ₄	ateric	comput	tw/		74	7.24	6.22	634	7.10
maments Ia / Ia	steric	comput	CW.						
moments ls / Sy	sterio	combra	500	9	× .	2.64		8.28	15.02
n the YZ plane (along X axis, in	steric	mojätä	tw	8	/A	4.20	14.94	9.72	17.29
ind the area of the YZ face of the	steric	molgrp	tw	2	(A	4.48	13.09	5.042	8.55
the farmen CPA spherer (in the pressed as %				8	/A	10.85	18.80	15.48	23.93
	electron	comput	pw, tw			00.95	78.00	08.51	47.10
lar polarizability β	electron	compati	pw, tw		her .		-300	10.0	
	electron	comput	pw, tw		hr -	20.3	1-19, 7	73.17	59.3
rability	electron	comput	pw, tw			169.22	65.7	19.32	9.81
dipole moment	electron	comput	pw, tw						
dipole moment	electron	comput	gw, tw		lo lo	151.0	138.6	82.5*	97.9
dpole moment	electron	combra	pw, tw	,	L.	116.5"	110.81	19.7	168.21
y projected on the YZ plane,	sterio	mojšub	6W		~				
is the number of atoms					5 - E	100.9	6F6.	21.44	98.9
box along the axes X (in the CPK	steenc	mogah	tw		4	78.3	4.01	-11.41	-1.4"
atio (of the YZ face of the	steric	molgrp	tw.			13.1*	77.4*	163.4"	171.7
A suffit as faired	at some in		in an			116.41	111.05	80.71	87.95
a run (2003)	steric	compos	ew.		- 49×				
anone and management of (1	sole a.	compos		E E	a-1	100.7	155.21	95.37	85.9
Wyp differences	steric	CONTRACT	tw	12		100.92	21.22	95.11	86.00
te molecular box defined by the	ateric	compan	CW .		•47	100.5	110		0410
omic coordinates					-				
nolecular has defined by the	steric	comput	tw	UP:	Ex	periment	al va	ues	of the
omic coordinates				done	ndor	t variab	lee for	the for	ir druge
lenned by the minimum and	spearc	centra	tw.	uope	nuei	it variab	103 101	une ioi	in unuga
bea				(DEC	2, CP	F, ET, RI	1Q).		
sofist of the more crist out	menc	centor	500						
simannin aons: cordnard	and the second se								
edges of the molecular out	receir.	curbor	000						
solara afika malandar han	at some in		in an						
of maximum atomic	with.	seening.							
e en chestern e chesternie Missier	an estadad	in anthe							
anten a actantia matrice decente	or Mafee	the by O	a work own						
and an and the balance and the	cent constant		the second from the						

Most drugs expose positive, amphiphilic or hydrophobic heads (R, R₁) toward the predominantly negatively charged ceiling and pore

β-Lactams in predicted position/orientation in the central cavity, with experimental DEQ (green), CPF (light blue), ET (pink) and RHQ (yellow). Linear relationships between the dependent variables (protein-drug complox (globe) moment components, polarizabilities) and steric (principal moments of intertia and their ratios, molecular box size parameters) molecular descriptors of drugs 17-20 were established (see the tables). These relationships were then used to predict the glactams. Three binding modes modes of the jactams. Three binding modes modes of the substrates in the central cavity were observed: predominantly E (east receptor wall) binding, W (west wall) binding, and bridging mode (two or more receptor sites are bound).

15 N. 3 00 con •c# 0• alla han 10 100 100 100

a)-d) Representative correlation plots between pMICs (efflux biological activities of AcrB in strains HN894 and PLE014 of 0 of a)-d) Representative correlation plots between pMICs (efflux biological activities of ACE in strains HN891 and SH5014 of S. tiphymurium) and AcEP-drug geometry parameters (calculated for 1-16, experimental for 17-20), with correlation coefficients for the complete data set and two subsets (separated by dashed midway lino), e) aD scores plot from PCA (Principal Component Analysis) for all dependent variables. The tendency of the sample clustering in terms of binding modes and activity classes may be observed by different coloring and legend.

16

Left: Some drug molecules at the vestibule entrance, with deduced orientation of their XY axes, at qualitative level. Right: Probable drug efflux pathway portion. Experimental & predicted drug center of mass positions reveal four possible pathways: I - binding to the vestibule binding sites a-4; II - drug binding to the W binding site in the central hole; III - drug positioning in the middle of two or three binding sites; IV - binding to the E binding site. A drug molecule moves along these trajectories until reaching its best binding position.

12

Ę

 $\frac{A_{ij}}{d}$

п

and the can A officiately ground in the can A officiately ground in the canonical trackards for

angle parameters are dependent variables that are quantitatively related to several steric and electronic descriptors molecular drugs 1-20.