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The so-called ‘-omics revolution’ is characterised by high throughput measurements 
and vast quantities of data.  Unfortunately, the quality of the measurements is often over-
estimated and, as such, simplistic assumptions regarding the structure of the measurement 
errors are made subsequent to application of routine data analysis techniques.  In 
transcriptomics by spotted DNA microarrays, it is beginning to emerge that the conceptual 
simplicity of the technology belies a potentially complex measurement error structure.  For 
example it has been shown variously that the data exhibit a non-constant variance leading to 
the recent development of models to ‘fix’ the problem.  Regrettably, the extent to which 
these error inhomogeneities affect individual microarray data has not been systematically 
explored and, consequently, the structure of the measurement uncertainties after 
transformations are applied remains uncharacterized.

This work presents the results of a systematic characterization of the measurement 
error structure for spotted DNA microarray data as well as a model that compartmentalizes 
the total variance exhibited by the measured intensity ratios into distinct components that 
can be measured independently.  In particular, one of the ratio variance components, which 
is often ignored in microarray data analysis, is the uncertainty associated with the 
measurement of the ratio itself.  In most microarray data, the ratio is determined as a mean 
or median of pixel intensities comprising a spot and no implicit information is provided about 
the accuracy with which this quantity is measured.  In this work, the ratio is measured as an 
orthogonal slope of the pixel intensities comprising the spot and a bootstrap approach is 
employed in determining the magnitude of the uncertainty associated with determining this 
ratio.  Those measurements for which this value dominates the total variance are eliminated 
in order to maintain the distribution of errors.  The structure of the measurement 
uncertainties is then characterized empirically using replicate measurements.

DNA microarrays are an emerging technology for genome-wide analysis of gene 
expression. Microarrays could potentially be used for investigating the onset and prognosis 
of diseases as well as investigating the effect, to cells, of drugs by observing the global 
over- or under-expression of gene products under these conditions. The heart of this 
technology lies in the hybridization of complementary DNA sequences. 

Single stranded gene sequences representing an organism are immobilized on a 
glass chip and used to probe for differential concentration of complementary pairs of similar 
genes derived from the organism – under different conditions. Although conceptually 
simple, the complexities of the experimental processes involved in this technology often 
introduce random and systematic biases into the measurements. These biases could be 
large enough to invalidate the effects that are under investigation. Among other sources of 
variability, systematic biases in microarray data can be attributed to the differential 
concentration and amount of cDNA placed on the microarray slides, spotting pins that may 
wear out over time, hybridization efficiency, mRNA preparation, lack of spatial homogeneity 
of the hybridization on a slide, dye biases and scanner settings. Random variability results 
in spot images that can show characteristics of poor definition, unusual morphology, low 
intensity, high background and signal saturation among other features.

Although some of the variability can be controlled by the experimenter to a limited 
extent, few can be completely eliminated. It is therefore prudent to remove the effects of 
such systematic variations and bring the data, collected on different scales onto a common 
one.
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THE GENERAL  EXPERIMENTAL SETUP

The general experimental setup of the DNA microarrays used for gene expression 
analysis is as shown in this Figure

The analysis of microarray data typically uses ratios or log2 ratios in order to
account for within spot and between spot variations

Scan with laser set at two 
different frequencies

A typical view of a scanned microarray image

From this setup, it is possible to envisage several stages at which uncertainty may 
be introduced into the experiments

DATA  QUALITY ANALYSIS

Unfortunately, most of the ratio measurements do not carry implicit or
explicit information about the inherent uncertainty.  As exemplified below,
measurements with the same ratio can have radically different physical
characteristics

DATA QUALITY ANALYSIS

Over time, there has been a recognition that microarray data
are inherently noisy and subsequent remedies have been devised to mitigate
the noise

These approaches can be categorized as “data filtering methods”
and “measurement error models”

Data filtering methods strive at identifying and excluding spot images, from 
further analysis, based on visual inspection to identify technical flaws

Some of the disadvantages of this approach include their labour intensive 
nature as well as their subjectivity to operator bias and image representation 
by the software 

In addition, the binary classification of spots as good or bad assumes that 
there is no continuum in the quality of spots 

Further, exclusion of spots by data filtering methods, requires that the spot 
is classified as missing in subsequent arrays in the analysis of multiple arrays

DATA QUALITY ANALYSIS

Measurement error models for microarrays are based on some statistical
distributional assumptions and emphasize reclaiming an assumed error 
structure

Some of these methods are overly complex requiring either replicate data
(which is seldom available) or estimation of several parameters [1 - 3] 

OBJECTIVES OF THE CURRENT WORK

◆ To develop a method for estimating the variance in the ratio measurement,
based solely on the morphological characteristics of the spot image and 
without the need for replicate data  

◆ To characterize measurement error variance in spotted DNA microarray
data in view of the anticipated proportional error structure and additive
components of the errors

PROPOSED ERROR MODEL

The model proposed is a nested summary of the variability in spotted DNA 
microarray data

PROPOSED ERROR MODEL AND RATIO CALCULATION
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Estimating the last term in this model - the variance associated with the evaluation
of the ratio from pixel data - is the focus of the first objective of this work. This will
be influenced by a variety of factors, including spot morphology, signal intensity
and background measurements

This model can be simplified as 

where the first term on the right hand side depicts a proportional component of
the total variance in the ratio, and can be estimated using replicates, while the 
last term is the additive component that must be determined for each spot

It is important to identify those cases where         dominates the overall variance 
so that these measurements can be excluded or weighted appropriately

2
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In order to achieve these objectives, the appropriate ratio calculation method was
identified as the orthogonal regression of the pixel intensities on the two channels
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This approach for ratio calculation eliminates the need for background estimation
given that the intercept mitigates the differential background between the two
channels
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ESTIMATING MEASUREMENT UNCERTAINTY 
Bootstrapping Method

This is done by randomly re-sampled (with replacement) the pixel data N times,
repeating the calculation each time

dia. dia.

Cy3 pixel data Cy5 pixel data

Orthogonal
regression

Procedurally, select red/green (x/y) pairs for the regression, excluding: (a) pixels
at saturation, (b) five most intense red pixels and, (c) five most intense green pixels   
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ESTIMATING MEASUREMENT UNCERTAINTY 

Validating the Bootstrap Estimated Errors

100 microarray spots that mimicked two typical morphologies were simulated
and bootstrap estimates of the uncertainty determined
Different levels of random noise realizations were added to the spots prior to the
bootstrap estimates 
The standard deviation of the ratios from the 100 spots were also obtained and
the agreement between this standard deviation and the bootstrap estimates is
shown   

* Note: the red dotted line indicates the bias in bootstrap 
estimates of the ratio, the red straight line is the
standard error of the 100 ratios while the blue
line is the bootstrap errors
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Bootstrap errors for a 
simulated donut spot 
morphology

Bootstrap errors for a 
simulated uniform spot 
morphologyResults in this figure indicate that at

least the bootstrap estimation method
is valid for ideal, simulated data

Experimental validation is difficult
since it requires multiple replicate spots
on the array, which is not often  
available for microarrays

Proportional error 
component

Additive error 
component

Subsequently, those cases where
the bootstrap error dominated the  
total variance were identified and
eliminated.  Such cases were
hypothesised to destroy the
proportional error structure for
microarrays  

This hypothesis was tested by
eliminating measurements whose
bootstrap RSD was greater than a given
threshold, and examining the error
distribution of the remaining  data

CHARACTERIZING MEASUREMENT UNCERTAINTY 

Ideally, log-ratio vs. log-ratio plots of replicates should be uniformly
distributed around the regression line (the errors should exhibit a uniform
distribution) and exhibit unity slope and a zero intercept

In practice, this is observed only when measurements with high bootstrap
RSD are eliminated as shown in the figures here
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CHARACTERIZING MEASUREMENT UNCERTAINTY 

Distribution of Orthogonal Residuals

The distribution of orthogonal residuals for
the preceding plot (censored for RSD> 20%, 
ratio < 0 and flags) appears normal as shown 
in this histogram  

This suggests that the overall error in the
ratio, corrected for σ2

meas , is proportional
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distribution residuals

CONCLUSIONS 

INTRODUCTION

In order to fully exploit DNA microarray data, much more attention
must be paid to the quality of the ratio data provided

The relative uncertainty in the ratio measurement step is highly variable
and needs to be taken into account at higher levels of data analysis

Bootstrap methods proved to be fairly reliable for estimating the uncertainty
in the ratio.  Screening points on the basis of the relative standard deviation
(coefficient of variation) in these ratios was effective for removing unreliable
measurements

When points with high measurement errors are removed, the residuals of 
the log-log plots for replicates appear to follow a normal distribution
suggesting that the other component, σ2

expt, of the uncertainty in the ratio is
a proportional error contribution

The nested measurement error model proposed, partitions the uncertainty
in the ratio into a constant proportional component and an additive
component, which is the uncertainty in the ratio measurement process

The uncertainty in the regression ratio was estimated through bootstrapping
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The ratio was reported as 
the mean of the orthogonal 
bootstrap slopes

The uncertainty in the ratio 
was reported as the standard 
deviation of the bootstrap
slopes

Bootstrap error estimates were
therefore assumed to be representative


