XVI Reuniẫo da SBCr

IFSC/USP, Sīo Carlos, SP, 16-19/03/03

Use of the Cambridge Structural Database in Study of Single and Partial Double C-X ($\mathrm{X}=\mathrm{C}, \mathrm{N}, \mathrm{O}$) Bonds in Organic Molecules in Crystalline State

Rudolf Kiralj and Márcia M. C. Ferreira

Laboratório de Quimiometrica Teórica e Aplicada, Instituto de Química,
Universidade Estadual de Campinas (UNICAMP),
Campinas, SP, 13084-971, Brazil
E-mails: marcia@iqm.unicamp.br, rudolf@iqm.unicamp.br, URL: http://lqta.iqm.unicamp.br

UNICAMP

Contents

1) Introduction to the CSD - general comments
2) The CSD use in Brazil - some statistical parameters
3) The CSD in study of bond lengths: our study
4) Data mining strategy
5) General C-C bond
6) Univariate Structure Corrrelation for Bond Lengths in π-Systems: PB-PAHs, aza-PAHs, diaza-PAHS, polyaza-PAHs, picrates, nucleobases
7) Multivariate Approach to Bond Length Prediction in π-Systems: PB-PAHs, nucleobases
8) Future Perspectives: CSD Use With Other Methods

Introduction to the CSD - general comments

What is the Cambridge Structural Database (CSD)?
Cambridge Crystallographic Data Centre (CCDC), University of Cambridge, UK
http://www.ccdc.cam.ac.uk/
-a database containing structural information (atomic parameters for a crystal of known cell dimensions and space group)
-includes detailed information from X-ray, neutron and synchrotron diffraction studies
-covers organic compounds, organo-metallic compounds, and metal-organic coplexes
-does not include: proteins, high polymers, inorganic compounds, purely inorganic carbon compounds (carbides, carbonates, carbonyls and cyanates)

How many crystal structures does it contain?

-established in 1965: a few thousand structures -current annual increase is > 20000 structure -the last version (November 2002) has 272066 structures

The number of chemical compounds in the CAS (Chemical Abstract Service) Registry Database, >50\% of which are peptides and proteins, is growing superexponentially. Exponential trend is observed for the CSD (Figure 1).

Figure 1. Left: Cumulative growth of the CAS-Registry Database. http://www.cas.org/casdb.html\#regdb Contents on 14-March-2003: 47120998 chem. compounds. Right: Cumulative growth of the CSD from 1970 to 2001. CCDC Annual Report for 2001.
http://www.ccdc.cam.ac.uk/annrep2001/report.html

3 basic modes: -1D, 2D, 3D information (Figure 2)

1D Bibliographic Information

BASY0J
4-oxonicotinamide-1-
(1'-beta-D-2', $\mathbf{3}^{\prime}, 5^{\prime}-t r i-0-$
acetyl-ribofuranoside)
Source: Rothmannia longiflora
C17 H20 N2 09.
G. Bringmann, M. 0chse, K. Wolf,
J. Kraus, K. Peters, E-M. Peters,
M. Herderich, L. Ake, F. Tayman
Phytochemistry 51 (1999), p271

Figure 2. Types of information in the CSD. Source: the CSD home page.

Level II
-retrieval of
some structures
-simple data
mining
-qualitative
structure correlation

Level III
-systematic
retrieval of
structures
-use of other
CSD modules
-simple statistics
or 3D search
-structure-based
drug design of
some compounds

Level IV
-systematic retrieval of many structures
-use of advanced CSD modules
-advanced statistics on 3D search, chemometrics
-QSAR, molecular
modeling, drug design of statistially big set of compounds

The CSD use in Brazil - some statistical parameters

What are the CSD products free for Brazilian scientist?

http://www.cede.cam.ac.uk/prods/

CCDC Products

CSD	Mercury
Cambridge	Crystal Structure
Structural Database	Visualisation
	Available for free download
ConQuest New Interface to the CSD	
	RPluto Graphical Display of
QUEST	Molecular and Crystal
Search and Retrieval Program for the CSD	Structures
	DBUse
VISTA	Database of
Statistical Analysis of	Publications using the CSD and Other CCDC
Geometric and Other Data	Products
	IsoStar
Creation of In-house	Knowledge Base of
Databases	Intermolecular

SuperStar Predicting Protein-Ligand Interactions
GOLD
Protein-Ligand Docking
Relibase + Easy Searching of Protein-Ligand Complexes
DASH
Structure Solution from Powder Diffraction Data

How many CSD licenses are in Brazil today?
The number of the licenses follows curvilinear growth (Figure 3). There is a characteristic geographical distribution of the licenses (Figure 4).

Figure 3. The growth of the CSD potential use in Brazil.

4 licenses per state: SP 2 licenses per state: MG
\square 1 license per state: AL, GO, PE, RS, SC, SE
\square area around the CSD site (300 km radius)

Figure 4. Geographical distribution of the 2003 CSD licenses in Brazil.

How much the CSD is used in Brazil?
-no reliable parameters
-probably the CSD is not much used in Brazil
-a tentative for the CSD use statistics for Brazil:

Country	Licenses 1992-1993	WDC10 (1997 ed.) Keyword. "database"	ISI Web of Sc. "Cambridge. Structura Database" in title, keywords or abstract - 14/03/03
Argentina	7	0	2
Brazil	12	0	1
Chile	2	0	0
Colombia	4	0	0
Costa Rica	1	0	0
Cuba	3	0	0
Mexico	11	0	2
Peru	1	0	0
Uruguay	1	0	2
Venezuela	3	0	1
F. YU Countries	5	3	11
Hungary	3	0	14
Japan	75	3	19
Germany	59	7	43
UK	38	14	120
Russia	53	6	18
USA	228	5	91

The CSD in study of bond lengths: our study

Definition of the problem:

-the CSD enables data mining for many high-quality crystal structures of many classes of compounds
-questions: What is a chemical, especially covalent bond? In organic molecules? What is a C-C bond, especially partial double, aromatic? What does it depend on? Can it be predicted in various chemical problems?

Typical classes of organic (C-H-N-O) compounds:

-simple organic compounds mainly with single C-C bonds -planar benzenoid polycyclic aromatic hydrocarbons (PBPAHs) and their aza-, diaza- and polyaza-derivatives -picrate-like systems (picrate derivatives, picrates) -nucleobases (nucleic acid bases)

Search for quantitative relationships (equations):

-quantitative relationships between experimental bond lengths in crystalline state and bond descriptors (the Pauling π-bond orders, other bond orders, topological descriptors, crystal packing parameters)

RLHOX
tetrapent

PYTEMOID2 गretre

Everuet 19

4.eesaula-alaviraseet

mename ?

siphenyimes

FEREEMOS
purplene

crisene 1
ctrpsense

- ©
12.5.5-diterametrasme

ETHORCDI

PENCENOI
purtasure

DNECRTEA

CUATER

Neruanis
kntrent

kencent
kbulere

A. Alevi Chen 16 (2000) 17 Fa .
Elouras) 12.2 -gerstpeviphers

VCgCORE1

FOFHAR

Eyazi poding triek =- bend whonering

- medlange - bondlungtering

135-trinituphavene TNBENZIO

X=OAI 1,3.5-tritydroxy-

2-Ificrylasy/mettyIbyridine JOKTM

$X=\mathrm{OH}, Y=\mathrm{O}^{\circ}$	1-hydrexy-3.5-fiexy-2,4,-trinitroberient KIYBAV
$X=O^{\prime}, Y=O H$	13-dibdrasy-5-ay-
	2,46-trivizuberame
	KIXOUM

PB-PAHs 2002:
R. Kiralj, M. M. C.

Ferreira, J. Chem.
Inf. Comput. Sci., 42 (2002) 508-523.

Picrates:

R. Kiralj et al., Acta

Cryst., B52 (1996)
823-837. PYRDNADI

isoppisoline
IVTOX

actiline
IVVAL

Aza-PAHs:

R. Kiralj et al., Acta

Cryst., B52 (1996)
823-837.

|-azatrighenylene BAZNOF

1283-dbenracidint
BNZACR

pyrimidine
PRMDIN01

s-triazin TRIZIN

2,6-diazanaphthalene DIAZNP

pteridine PTERID11

quinoxaline YAWJIP

1,5-diazanaphthalene DAZNAR

1,3,4,6-tetraazacycl(3.3.3.)azine TAZCAZ

1,8-naphthyridine NAPTYR, NAPTYR11
phenazine
PHENAZO4

1,10-phenanthroline AMPCLP

1,4-diazaphenanthrene BEZSAA

naphtho(2,1-b)(1,5) naphthyridine VERMOU

Diaza- and polyaza-PAHs:
R. Kiralj et al., J. Mol. Struct. -Theochem., 427 (1998) 25-37.

14

15

16

17

18

23

19

20

21

22

24

25

26

27

28

29

30

31

(R, D)

Nucleobases 2003:
R. Kiralj, M. M. C. Ferreira, J. Chem. Inf. Comput. Sci., in press.

Simple organic compounds, carbon allotropes and molecular complexes from the CSD, spectroscopy, proper $a b$ initio calculations, and other literature sources: M. M. C. Ferreira, R. Kiralj, in preparation.

Hydrocarbons:

-ethane
-ethylene
-acethylene
-egzohydrogenated (zig-zag) nanotubes (7,0) and (12,0)
-n-nonane
-allene
-dodecahedrane
-cyclopentadienyl anion
-cyclobutane
-cyclohexane
-hexabenzocoronene (its central ring)
-benzene
-(PB-PAHs)

Carbon allotropes:

-fullerenes C_{60} and C_{70}
-carbyne
-hexagonal and rhombohedral graphite
-cubic diamond
-FCC metallic carbon
-acetylide anion

Complex species:

-hexachlorobenzene
-(pyrene) ${ }_{2}$, pyrene-TCNQ, pyrene-(DOP) ${ }_{2}$
$-(\mathrm{TCNQ})_{2},(\mathrm{TCNE})_{2},(\mathrm{DDQ})_{2}$

Data mining strategy

	PB- PAHs	Aza- PAHs	Diaza-, Polyaza -PAHs	Picrates	Nucleo -bases	Simple organic comp. etc.
\boldsymbol{R}	$\leq 7 \%$	$\leq 7 \%$	$\leq 7 \%$	$\leq 7 \%$	$\leq 6 \%$	$\leq 7 \%$
σ / \AA	≤ 0.015	≤ 0.015	≤ 0.015	≤ 0.015	≤ 0.005	≤ 0.005
Year	any	any	any	any	≤ 1975	any
disorder	no	no	no	no	no	no
errors	no	no	no	no	no	no
atm type	CH	CHN	CHN	CHNO	CHNO	CHNOX
org.met.	no	no	no	no	no	no
met. com	no	no	no	no	no	no
planar	yes	yes	yes	any	any	any
excluded bonds	-	-	N-N	-	$\begin{aligned} & \mathrm{N}-\mathrm{N} \\ & \mathrm{~N}-\mathrm{O} \\ & \mathrm{O}-\mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{N}-\mathrm{N} \\ & \mathrm{O}-\mathrm{O} \end{aligned}$
retrieved species	PB- PAHs	aza- PAHs	$\begin{gathered} \text { diaza-, } \\ \text { polyaza } \\ \text {-PAHs } \end{gathered}$	picrates	$\begin{aligned} & \text { nucleo- } \\ & \text { sides } \end{aligned}$	hydrocarbons C allotr. mol.com.

General C-C bond

Pauling's bond number (bond multiplicity) M
— Pauling's curve: $D / \AA=1.504-0.3128(M-1) /(0.84 M+0.16)$ Brown's curve: $D / \AA=1.54-0.37 \ln M$

- Our line: $\quad D / \AA=1.468-0.147(M-1)$ for planar PAHs

Figure 5. C-C bond length as a function of the Pauling's bond multiplicity, from acethylene and acetylide anion to saturated hydrocarbons and diamond, and even more to intermolecular complexes bound by weak C-C bonds. Bond orders of other types give very similar results.

Novoa et al. discovered the longest C-C bond even known: an electron defficient bond in donor-acceptor complexes, with very small bond number, and bond lengths up to the graphite interlayer distance.

Various carbon compounds, allotropes and species are spread over the whole range of the bond number, along the Pauling's and Brown's curves, supporting the new findings on the longest $\mathrm{C}-\mathrm{C}$ bonds.

This discovery shakes the old concept of the C-C bond: "nonbonding interatomic" or "intermolecular interactions" should be considered as intemolecular chemical bonds.

Figure 6. J. J. Novoa et
 al., Angew. Chem. Int. Ed., 40 (2001) 2540. $[\mathrm{TCNE}]_{2}{ }^{2-}$ complex is an example of the longest C C bonds with lengths 2.8 - 3.5 Å. Four C atoms share two electrons ($M<$ 0.5). Del Sesto et al., Chem.-Eur. J., 8 (2002) 4894; J. J. Novoa et al., Cryst. Eng. Comm., (2002) 373.

Univariate Structure Corrrelation for Bond Lengths in π-Systems: PB-PAHs, aza-PAHs, diaza-PAHS, polyazaPAHs, picrates, nucleobases

Relationships between structural parameters:
-Structure correlation (SC)
-(Quantitative) Structure-Structure Relationships ((Q)SSR)
-Bond Length-Bond Order Relationships (BLBOR)
-Bond Length-Bond Descriptor Relationships (BLBDR)
Our study: Univariate relationships (linear regression) between bond lengths D and Pauling π-bond orders $P(P=M$ - 1): $D / \AA=a+b P$
a and b exhibit expected similarities and differences:

C-N Aza-PAHs
Diaza-PAHs
Polyaza-PAHs
Nucleobases
b
1.468(2)
1.462(6)
a
1.458(3)
1.421(30)
1.497(11)
1.487(7)
1.444(10)
1.415(4)
1.431(20)
1.398(3)
$1.326(5)$
1.295(16)
$1.429(5)$
-0.147(5)
-0.143(13)
-0.143(8)
-0.087(81)
-0.212(25)
-0.202(16)
-0.184(18)
-0.152(8)
-0.128(42)
-0.127(7)
-0.198(18)
-0.101(26)
-0.199(13)

Figure 7. The mean C-C bond length in various π-systems.

Figure 8. The C-C bond length variation in various π - systems.

Multivariate Approach to Bond Length Prediction in π-Systems: PB-PAHs, nucleobases

Figure 9. Degeneration of the $D-P$ graph for PB-PAHs.

Figure 10. Degeneration of the $D-P_{\mathrm{w}}$ graph for nucleobases.

Bond descriptors to decrease the data degeneration:
-Pauling π-bond order P
-weighted Pauling π-bond order P_{w}
-Pauling π-bond orders including crystal packing effects (H bonds, vdW interactions, etc.) P_{x}
-electrotopological index: the sum of atomic numbers Q
-topological indices:
-the number of neighboring bonds n -the number of neighboring rings m -the number of neighboring bonds l around bonds already counted for n

PB-PAHs: P, various P_{x}, n, m, l
Nucleobases: P, P_{w}, various P_{x}, n, Q

Figure 11. Some examples for (electro)topological indices

Results of the Principal Component Analysis (PCA)

A C

PB-PAHs
nucleobases

Figure 12. 3D scores plots from PCA show similarity and dissimilarity between PB-PAHs and nucleobases. Roman numerals denote various classes of bonds defined by topological indices: ($n m l$) for PB-PAHs, (Qn) for nucleobases.

Results of the Hierachical Cluster Analysis (HCA)

Figure 13. HCA dendograms for samples (A, B) and variables (C, D) for PB-PAHs and nucleobases. The groups from the 3D PCA scores plots are marked in the same way, adding \mathbf{s} (for short bonds) and \mathbf{l} (for long bonds) for subgroups of VII and X (PB-PAHs), and VIII and IX (nucleobases).

Multivariate Bond Length-Bond Descriptor Relationships

Partial Least Squares (PLS) regression showed to be more adequate than linear regression for the study of C-C, C-N and C-O bond lengths in PB-PAHs and nucleobases.

Much better PLS regression models were obtained using more bond variables than only Pauling's bond order P.

PB-PAHs:
$D / \AA=1.431-0.060 P-0.063 P_{\mathrm{x}}+0.006 n+0.004 m+0.001 l$
$R=0.94, \Delta=0.007 \AA \rightarrow$ univariate: $R=0.90, \Delta=0.010 \AA$
PLS: 2 principal components ($>96 \%$ original data)

Nucleobases:
$D / \AA=2.304-0.080 P-0.078 P_{\mathrm{x}}-0.068 Q-0.006 n$
$R=0.93, \Delta=0.017 \AA \rightarrow$ univariate: $R=0.65, \Delta=0.037 \AA$
PLS: 3 principal components ($>98 \%$ original data)

Future Perspectives: CSD Use With Other Methods

DATA MINING +

CHEMOMETRIC ANALYSIS +

STRUCTURAL \& COMPUTATIONAL METHODS

A VERY POWERFUL MEANS TO STUDY BOND LENGTHS IN ORGANIC CRYSTALS +

INTERESTING AND USEFUL RESULTS ON BASIC CHEMICAL CONCEPTS (WHAT IS A BOND?? C-C BOND??) +

DIRECTIONS FOR FUTURE STUDIES (intrinsic π system properties, substitution effects, crystal packing effects, (hetero)aromaticity, crystal packing, etc.)

THIS IS VALID NOT ONLY FOR BOND LENGTH BUT FOR OTHER STUDIES WHICH USE THE CSD EXTENSIVELY.

