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CSD FRAGMENT SEARCH
Q Q Q=B,C,N,O,SiP,S,As, Se
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MANUAL STRUCTURE SELECTION
Eliminatory conditions: Other conditions:
-central ring is not in spiro- or other ring structure -R, Ry, and R, may be bonded to metals and may

-central ring has at most one double exocyclic bond  form complicated rings and other structures
-linker C is not in rings and is not bonded to metals -disordered structures are included

-fing ambiguities avoided: only 1 and 2 X-C-C-Q -polymers and structures with errors are excluded
torsion angles in MDBL- and HK-like structures, -structures with no hydrogen atoms are included
respectively, exist in retrieved structures -all redeterminations are included

U

TORSION ANGLE X-C-C-Q MEASUREMENT
Q Q
Q/ \Q Q/ \Q Items defining the measured data set:
\ / \ / -crystallographic symmetry (space groups)
% C Q X o ¢ X with inversion center_s_ and(or planeg
/ / \ -special/general positions in the unit cell
Q o Q c o Q occupied by targe'F molgculesllons . .
-target molecules/ions in asymmetric unit
MDBL-related structures HK-related structures -disordered positions or orientations
X = Q or H (crystallographically determined or modeled) ~defining the angle X-C-C-Q

Scheme A. Data mining strategy in obtaining torsion angles data for MDBL- and HK-related crystal structures
from the Cambridge Structural Database (CSD).




Scheme B. Fragments that were used for definition of general y-butyrolactone (left) and methylenedioxy (right)
rings in the searches of Cambridge Structural Database (CSD), without any filtering. Bold are atoms defining the
ring’s least-squares plane, and the black balls are atoms on which the envelope is expected.
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Figure A. Vista histograms representing the distance of the envelope atom from the least-squares plane of the
other four atoms in the five-membered rings as defined in Scheme B. There are three maxima for y-butyrolactone

rings (Ieft) and a continuum with decreasing frequency for methylenedioxy rings (right).
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DEHQIQ
VOQROI

Figure B. Atomic nhumbering of MDBL applied to the three most relevant structures from the CSD. These three
structures can be used instead of the inexistent crystal structure of MDBL, due to common parameter overlaps and
similar structure determination quality and conditions, as shown below. Chemically and structuraly identical

fragmentsto those in MDBL are drawn pink.

CSD REFCODE Temperature R-factor Cryst. System Bond leng. exp.err.

DEHQIQ room temp. 7.74% orthorhombic 0.006 — 0.010 A
GEBJOM room temp. 5.60% orthorhombic 0.006 - 0.010 A
VOXROI room temp. 6.12% orthorhombic 0.006 - 0.010 A
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Table A. Experimental geometries used to define experimental values for MDBL to which results from various

computational approaches should converge.

Parameter® DEHQIQ" VOQROI° GEBJOMP Recommended® PM3?
C9=0 1.203(6) 1.200(4) - 1.202(4) 1.207
C9-0 1.358(7) 1.358(4) - 1.358(4) 1.373
C9-C8 1.473(4) 1.487(4) - 1.480(4) 1510
C8-C8’ 1.527(7) 1.516(4) - 1.522(4) 1.534
C9'-0 1.467(9) - - 1.467(9) 1.428
C8-CY’ 1.535(9) - - 1.535(9) 1.547
C7'-C8 1.526(7) 1.530(4) 1.528(6) 1.528(3) 1.527
C1-C7 - 1.509(3) 1.511(6) 1.510(3) 1.496
C1'-C6’ - - 1.380(6) 1.380(6) 1.394
C1-C2 - - 1.402(6) 1.402(6) 1.408
C2'-C3 - - 1.374(6) 1.374(6) 1.379
C3-C4’ - - 1.371(6) 1.371(6) 1.410
C4'-C5’ - - 1.358(6) 1.358(6) 1.380
C5'-C6’ - - 1.400(6) 1.400(6) 1.402
C3-0 - - 1.375(4) 1.375(4) 1.388
C4'-0 - - 1.378(5) 1.378(5) 1.388
C10'-O(C3) - - 1.432(6) 1.432(6) 1.439
C10'-O(C4) - - 1.405(6) 1.405(6) 1.439
0-C9=0 120.3(6) 121.8(3) - 121.1(5) 114.3
C8-C9=0 128.1(5) 129.5(3) - 128.8(3) 133.1
O-C9-C8 111.6(4) 108.8(3) - 110.2(3) 112.6
C9-C8-C8' 104.8(4) 103.1(2) - 104.0(2) 104.1
C8-C8'-C9' 101.6(5) 102.7(2) - 102.2(3) 104.6
C8-C8'-C7’ 114.4(4) 117.2(2) - 115.8(2) 113.0
C8'-C9'-0 105.7(5) 101.9(2) - 103.8(3) 108.9
C7'-C8-CY 110.6(4) 116.6(2) - 113.6(2) 111.3
C8-C7'-CY - 111.5(2) 110.8(3) 111.2(2) 111.8
C7'-C1'-C6’ - - 119.7(4) 119.7(4) 119.9
C7-C1-C2 - - 119.9(4) 119.9(4) 118.7
C1-C6'-C5’ - - 122.1(4) 122.1(4) 122.1
C6'-C1'-C2 - - 120.3(4) 120.3(4) 121.4
C1'-C2-C3 - - 116.8(2) 116.8(2) 116.3
C2'-C3-C4 - - 121.8(4) 121.8(4) 122.1
C3-C4'-C5’ - - 122.9(4) 122.9(4) 121.9
C4 -C5'-C6’ - - 116.0(4) 116.0(4) 116.2
C2'-C3-0 - - 127.1(4) 127.1(4) 128.3
C5'-C4'-0 - - 127.1(4) 127.1(4) 1285
O-C3-C4’ - - 110.2(4) 110.2(4) 109.6
O-C4'-C3' - - 110.0(4) 110.0(4) 109.6
C3'-0-C10’ - - 104.3(3) 104.3(3) 106.1
C4'-0O-C10’ - - 105.1(4) 105.1(4) 106.1
O-C10'-O - - 104.3(3) 104.3(3) 108.7
0O-C9'-C8'-C8 -27.2(6) 32.4(3) - +29.8(3) -0.6
C9'-C8'-C8-C9 24.0(6) -33.0(3) - +28.5(3) 0.7
C8'-C8-C9-0 -13.0(6) 21.5(3) - +17.3(3) -0.6
C8-C9-O-C9’ -4.9(7) -0.4(3) - +2.7(4) 0.2
C9-0-C9'-C8' 20.8(6) -20.6(3) - +20.7(3) 0.3
H8'-C8'-C7'-C1’ (©) - 52.0 - 52.0 52.5
0O=C9-0-C9’ 176.6(6) 179.7(3) - +178.2(3) -179.8
0O=C9-C8-C8 165.4(6) -158.7(4) - +162.1(4) 179.4



Dcpy 2431 107.0 - any multiple of 36° planar

K, 6.75 2.97 - closeto an integer planar
AC8 +0.430(5) -0.534(2) +0.482(3) +0.012
®cro - - 325.3 any multiple of 36° planar
Ko - - 9.04 closeto an integer planar
AC10’ - - +0.127(6) +0.127(6) +0.002

¥Parameters given in A (angstrom) units are bond lengths and deviations of the envelope atoms C8 and C10’ from
the least-squares planes of the four atoms in the respective five-membered rings. Parameters given in (°) degrees
are bond angles, torsion angles and Cremer-Pople puckering parameters for the y-butyrolactone ring (®cp,) and
the methylenedioxy ring (®cpo). Without units are numbers k, and ko obtained from genera relationship @ = k
36°. All parameters have experimental errors i.e. estimated standard deviations in brackets whenever possible.
The positive and negative signs of deviations A mean that the corresponding envelope atom lies above and below
the plane of the other four atoms, respectively, in the y-butyrolactone and methylenedioxy rings as defined in
Figure B.

®The three MDBL-related crystal structures that were retrieved from the CSD, as defined in Figure B.
‘Recommended values are made as averages whenever possible, otherwise are from the only crystal structure that
possesses the MDBL'’ s structural fragment of interest.

% alues obtained from PM3 geometry optimization of the MDBL geometry.
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Description of structural descriptorsin TableC

1) Obtained from analysis of the crystal structures by the PLATON program:

Ncr - total number of short intermolecular contacts that were counted using these criteria for general atoms|, Jand
X:
Distance d(I-J) <R(l) + R(J) + T, with tolerance T= 0.2 A
Angle Z(X -1...J)>100°
Contact (van der Waals) radii R
Element C H N O
R/A 170 1.20 155 152
Ncn - coordination number obtained from the above analysis
Ncc - number of close non-hydrogen bond contacts from the above analysis
Nns - number of potential hydrogen bonds (classic and non-classic) satisfying following geometrical criteria for
general donor (D), acceptor (A) and hydrogen (H) atoms:
Distance d(D...A) < R(D) + R(A) + 0.50 A
Distance d(H...A) <R(H) + R(A) - 0.12 A
Angle Z(D-H...A) >100°
By classic hydrogen bonds are understood bonds of the general type N,O-H...N,O.
Non-classic hydrogen bonds are weaker and of general type C-H...N,O.
Nrec - number of classic hydrogen bonds from the above hydrogen bond analysis

Nin - number of short intramolecular contacts that were counted using the same criteria as the shortest

intramolecular contacts.

Na - number of all atomsin amolecule

Ny - number of hydrogen atomsin amolecule

Wy - mass fraction of hydrogen atomsin amolecule
M;, - relative molecular mass

Vv - unit cell volume per molecule

S12



p - crystal density

U - linear absorption coefficient of the crystal with respect to MoK o radiation

2) Obtained from PM3 optimized geometry and cal culated by the Titan program:

V - molecular volume

S- molecular surface area

3) Combined descriptors:

Cx -packing coefficient obtained as Cy = Vv

AO - absolute difference between crystallographic and computed (PM3) values for the rotation angle © or
Z(C1-C7-C8-H8)

Two more descriptors were derived from these:

Ns — number of the strongest intermolecular contacts defined as Ns = Npg + Nec

L(Ns) —linearized Nsas L(Ns) = (Ns - 5)°

S13



+
L R

+*
-
-
-
+*

4+

P il

Figure D. Correlations of the structural descriptors with A® for the MDBL-like structures.

Commentsfor Figure D

It is visible that some of the correlograms show regular trends, meaning that crystal packing and molecular
structure determine the molecular conformation in the crystal and its computational approximation. Among good
linear trends one can notice the A® increases with the elevation of the coordination number Ny and the number
of hydrogen bonds Nys. The linearized Nsi.e. L(Ns) is also well-correlated with the rotation deviation.

There are also some interesting non-linear correlations of A® with the structural descriptors. The number of
classic hydrogen bonds Nysc shows that there are two groups of samples, each to be attributed to one of the two
paralel parabolas in the correlograms, with maxima around 1.25. However, the correlograms for Ns exhibit its
maximum at 5.

These two correlograms indicate that a classic hydrogen bond (N,O-H...N,O) and three non-classic hydrogen
bonds (C-H...N,O,C) are responsible for the largest conformational change of an MDB-like molecule in crystal,
because of what semi-empirical PM3 is generally unable to reproduce a close conformation. Smaller number of
such hydrogen bonds can mean a conformation closer to that of the free state, while elevated number of the
hydrogen bonds may cause some isotropically distributed intermolecul ar forces that mainly cancel each other.
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The third type of illustrative correlograms is where two groups of samples show opposite trends and meet at
extremely low or high values of the descriptor in question. Such descriptors are the number of the shortest
intramolecular contacts Ny, the number of all atoms N,, crystal density p, molecular volume V and surface area S
and the linear absorption coefficient u. Other correlograms seem to consist of two or more sample groups,
sometimes arranged as parallel lines, but due to the small number of samples it is impossible to evaluate the
statistical significance of such trends. It is certain that symmetrically different molecules in the same asymmetric
unit have distinct crystallographic environment, and consequently, their numbers of various contact types are not
equal: see Table C for samples DUXPOB-1 and DUXPOB-2, and also for ZUKYOT-1 and ZUKY OT-2.

Numerical values associated to the correlogramsin Figure C arein Table D.

Table D. Correlation coefficients between the
descriptors from Figure D and the rotation

deviation A®

Descriptor Correlation coefficient
Ncr 0.290
Nen 0431
Ncc 0.036
Nus 0.776
Ns 0.480
L(Ns) -0.687
Nhec 0.260
Nin 0.217
Na 0.500
Nu 0.404
W -0.061
M, 0.549
v 0.531
p 0.039
\Y, 0.555
S 0.562
Cxk 0.063
i -0.062
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PLSanalysisfor datafrom TableC

Three descriptors with bold correlation coefficients in Table D were selected for PLS (Partial Least Squares
regression) analysis to predict the deviations A®. The following results were obtained:

1 PC, 57.7% total variance, SEV = 2.78°, SEC = 2.44° Q = 0.760, R = 0.853, maximal error 4.29°.

Regression vector:  Ncu: 0.249 Nug: 0.449 L(Ns): -0.397

The predictions areillustrated in Figure E.

Interpretation: Molecular size and the number of various functional groups, especially hydrogen bonding and
polar groups result in the increase of the coordination number and hydrogen bonds, which, with a few shortest
non-hydrogen bonding contacts cause significant changes in molecular conformation. Such a conformation cannot
be reproduced by PM3 and presumable with other semi-empirical methods, and it is supposed that higher
computational levels (ab initio, DFT) would not be much more successful in this also. However, these
computational procedures could be powerful if applied to molecular complexes as parts of the coordination sphere
around the referent molecule. This PLS prediction is sufficiently quantitative to be used in deciding what

computational strategy besides PM 3 optimization of an isolated MDBL-like molecule is the most suitable.
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Figure E. PLS prediction of the PM3 rotation deviation A®.
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Description of structural descriptorsin Table E

Most descriptors are the same as defined in Table C, and were obtained in the same procedure.

The only new descriptors are hydrogen bond descriptors, obtained by analysis of crystal structures by means of
PLATON as described for Table C.

NypT - total number of potentia hydrogen bonds (classic and non-classic), defined asin Table C
Nneo — humber of potentia intermolecular hydrogen bonds (classic and non-classic)

Nrei —number of potential intramolecular hydrogen bonds (classic and non-classic)

Ncr — total number of classic hydrogen bonds from the above hydrogen bond analysis

Nco - number of classic intermolecular hydrogen bonds from the above hydrogen bond analysis

N - number of classic intramolecular hydrogen bonds from the above hydrogen bond analysis

A new descri ptor was defined as L(NHBT) = (NHBT - 4)2

The rotation angle deviation A® was defined differently than before. Instead of including only one angle deviation
(crystallographic — PM3) as for MDBL-like structures, A® is defined as the sum of these deviations for the two

angles ©, (C1-C7-C8-H8") and ©, (C1-C7-C8-H8). This is because of approximately mirror-related structuresin

most cases and the opposite correlogram trends observed for the individual angles.
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Figure G. Correlations of the structural descriptors with A® for the HK-like structures
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Commentsfor FigureG

Most correlograms in this figure do not show so clear trends like those in Figure D. Thisis due to the structure of
the common skeleton of HK-like structures which is more complicated and has more conformational degrees of
freedom than the skeleton of MDBL-like structures, and also because of large variations of structural subtypes
among HK-like structures (what includes compounds with metals and large substituents). There are at least two

groups of structures, obviously separated in the correlograms where A© is linearly correlated to a structural

descriptor for each group: Na, Ny, M;, v, p, V and S. All these descriptors illustrate that larger the molecule and
though more dense the crystal, more similar is its conformation in crystal to that in the free state. It islike smaller
molecules have more free space or are less tightly bound to each other in crystal so they can undergo more
pronounced vibrations and disorders. Similar information may be obtained if one looks correlograms where the
samples are rather spread but some linear tendency is retained: coordination number Ney and the number of
classic intermolecular hydrogen bonds Nco.

There are some correlograms showing non-linear dependence of A® on a structural descriptor. While a parabola

with minimum at low A® isnot so clearly defined in the A® -Ncc plot, the analogous curve in the A® -Nygt plot is
much better defined. It is obvious that PM 3 conformations for molecules with the minimum value Nygt = 4 will
best reproduce the crystallographic conformations. However, this plot exhibits the sasmplesin at least three groups.
When this descriptor is linearized into L(Nygt) = (Nugt - 4)?, the separation between three groups is more cbvious.

Correlation coefficients related to Figure G are in Table F below. Low correlations do not permit to build a

regression model for prediction of A® values.
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Table F. Correlation coefficients between the

descriptors from Figure G and the rotation

deviation A®

Descriptor Correlation coefficient
Ncr -0.229
Nin -0.140
Nen -0.304
Ncc 0.201
NhaT 0.013
L(NhgT) 0.196
Nhgo -0.242
Nhzi 0.219
Ncr -0.073
Nco -0.068
Nci -0.052
Na 0.006
NH 0.062
WH 0.212
M; -0.043
v -0.007
p -0.174
Vv -0.015
S -0.018
Cxk -0.091
u 0.028
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Table G. The rotation angle deviation A® for a MDBL-like structure (CSD REFCODE: DIV JIQ®) obtained from

different computational approaches’

Method® Structure” Target AO° AO© for other molecules®

MMFFo4 single molecule 10.78° -

Sybyl single molecule 12.97° -

(MD/MM2)/MMFF94* single molecule 14.55° -

(MD/MM2)/Sybyl” single molecule 15.90° -

MNDO single molecule 10.56°

AM1 single molecule 11.84° -

PM3 single molecule 9.22° -

HF: STO-3G single molecule 15.65° -

B3LYP: STO-3G single molecule 9.12° -

HF: 3-21G* single molecule 12.04° -

B3LYP: 3-21G* single molecule 10.98° -

HF: 6-31G* single molecule 12.65° -

B3LYP: 6-31G* single molecule 12.90° -

HF: 6-31G** single molecule 12.68° -

B3LYP: 6-31G** single molecule 11.06° -

(MD/M M 2)/M M FF94" HB dimer 4.71° 11.35°

(MD/MM2)/MMFF94* HB dimer 13.91° 4.11°

MMFF94 HB dimer A 8.61° 10.56°

Sybyl HB dimer A 17.69° 14.29°

(MD/MM 2)/MM FF94 HB dimer A 1.04° 16.71°

(MD/MM2)/Sybyl HB dimer A 20.34° 16.55°

MNDO HB dimer A 12.69° 12.12°

AM1 HB dimer A 8.44° 12.08°

PM3 HB dimer A 3.65° 8.56°

B3LYP: STO-3G HB dimer A 9.54° 7.03°

MMFF94 HB dimer B 15.00° 8.41°

Sybyl HB dimer B 13.53° 13.26°

(MD/MM2)/MMFF94 HB dimer B 12.24° 14.71°

(MD/MM2)/Sybyl HB dimer B 16.83° 16.00°

MNDO HB dimer B 12.36° 11.18°

AM1 HB dimer B 8.50° 12.25°

PM3 HB dimer B 8.90° 8.72°

B3LYP: STO-3G HB dimer B 9.54° 7.03°

(MD/MM2)/MM FFo4* HB trimer 15.52° 12.72°,17.66°

(MD/MM2)/MMFFo4* HB trimer 18.79° 12.93°, 14.88°

MMFF94 HB hexamer 14.56° 8.44°,9,75°,12.87°, 14.12°, 18.07°

Sybyl HB hexamer 13.15° 13.04°, 13.88°, 14.81°, 16.02°, 16.48°

(MD/MM 2)/MM FF94 HB hexamer 3.04° 0.44°,10.88°, 20.55°, 27.84°, 37.91°

(MD/MM2)/Sybyl HB hexamer 6.88° 9.41°, 11.52°, 18.76°, 21.74°, 22.90°

MNDO HB hexamer 12.16° 11.02°,11.75°, 12.06°, 12.07°, 12.08°

AM1 HB hexamer 11.56° 9.10°, 12.02°, 12.27°, 12.42°, 12.48°

PM3 HB hexamer 12.69° 2.62°,6.43°,9.02°,10.61°, 12.39°

MMFF94 Coord. Sphere 5.58° 1.02°,6.47°, 14.12°, 13.08°, 15.68°, 18.52°,
19.48°, 25.58°, 28.80°, 31.34°, 42.84°, 43.71°

Sybyl Coord. Sphere 12.10° 3.11°,7.29°, 8.27°, 9.00°, 9.50°, 9.52°, 15.02°,

17.87°,21.00°, 22.13°, 22.30°, 26.11°

(MD/MM 2)/MM FF94 Coord. Sphere 4.30° 3.98°,10.71°, 11.16°, 12.79°, 14.40°, 15.23°,
15.86°, 18.76°, 19.32°, 21.75°, 24.30°, 36.99°

(MD/MM2)/Sybyl Coord. Sphere 11.99° 0.57°,1.08° 6.19°, 7.10°, 7.39°, 9.43°, 11.76°,

12.45°, 13.66°, 16.98°, 23.75°, 36.18°




#This compound is one of the ten MDBL-like structures retrieved from the Cambridge Structural Database. It is
(E)-4-(2-hydroxyi minocycl opentylmethyl)-phenylacetic acid Ci4H17NO3, with crystal structure determined by X-
ray CuKo radiation a 298 K and factor R=5.97% |[T. Hatu, S. Sato, C. Tamura (E)-4-(2-
hydroxyi minocycl opentylmethyl)-phenylacetic acid. Acta Cryst. C42 (1986) 452-454.] It is a colorless crystal that
crystallizes in space group P2y/c and has four molecules in the unit cell (two enantiomeric pairs). "Computational
procedures were carried out using programs Titan [Titan v. 1.0.8., Wavenfunction Inc. & Schrdédinger Inc., 2001]
and Chem3D [CS Chem3D Ultra, CambridgeSoft.Com, Cambridge MA, 2000]. The computational approaches
included: molecular mechanics force fields MMFF94 and Sybyl in the Titan software, molecular dynamics (MD)
and molecular mechanics force field MM2 in the Chem3D software, semi-empirical (MNDO, AM1, PM3), ab
initio (HF) and DFT (B3LYP) methods in the Titan software. Combined approaches as (MD/MM2)/MMFF94
stand for MD (default parameters) followed with MM2 geometry optimization and then with MM FF94 treatment.
°All the methods used experimental structure for the initial geometry, except for methods marked with # that were
used first to draw the structures and then treat them computationally. “Besides single molecule, molecular
aggregates were also considered. Hydrogen bonded dimers A and B differ in the neighboring molecule in

interaction with the referent molecule (the molecule that was treated with purpose to minimize A®). Hydrogen
bonding hexamer includes five molecules that are in interaction with the referent molecule mainly via hydrogen
bonds. Coordination sphere includes the referent molecule and all twelve molecules that make the first

coordination sphere around it. “The A® values for the referent molecule and other molecules from molecular
aggregates. The bold methods are those representing the best results (A®© < 5°) for the referent molecule.

Commentsfor Table G

The AG results presented in Table E for the selected MDBL-like structure show some interesting trends that
should be commented. The diverse calculations were performed in order to show the effect of crystal packing to
the conformational parameter © of this compound, as well as to point out the complexity of computational efforts
to minimize A®. Although most of time ab initio and DFT are considered as the methods that in the best way
reproduce experimental geometry, in case of conformational problems it can be rather different. Excellent
reproducing of bond lengths and angles as well as of torsion angles defining closed structures (rings), in which ab
initio and DFT methods are known to be superior to semi-empirical and empirica methods, is not considered
here. What is of primary interest in this study is to reproduce © values i.e. to minimize A® because the torsion
angle © defines the overall molecular conformation of the studied compound. Maybe higher levels of ab initio or
DFT theory really could improve the results but such approaches would be time-expensive. Besides, there is no
guarantee for better results anyway because two different phases are considered: areal crystal and the gas phase or

very small molecular aggregation that looses the original structural features determined by the crystal symmetry.
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The investigated compound’'s © value is by some 15° smaller than the value of 60° for ideal gauche conformation.
Most computationally obtained single molecules have angles rather close to this ideal value. However, crystal
packing forces around the molecule, primarily hydrogen bonds, then crystal symmetry, the presence of identical
and mirror-related molecules, and in some extent intramolecular interactions, define the experimental value of ©.
It is very difficult or even impossible to simulate all these real conditions without some software specially
designed for infinite systems, polymers and crystals. The energy minimum conformation of a single molecule is
not necessary equal to the experimental conformation. Dimer, trimer, hexamer or even coordination sphere are not
equal to the crystal environment, and their constitutive conformers will participate in intermolecular interactions
that have lost the periodicity and symmetry from the crystal. It is obvious for dimers, trimers, hexamers and the
complete coordination sphere that chemically equal molecules substantially differ in A® values, what does not
happen in the crystal (unless there are more than one molecules in the asymmetric unit). It isimpossible to predict
which method will give the smallest A© value for the referent molecule and not for other molecules. Some general
conclusion can be made that molecular aggregations may yield better results at some molecular mechanics (in this
example: MM FF94) or even semi-empirical (in this example: PM 3) methods. Probably some other example would
not indicate exactly the same particular methods as the best ones. Therefore, a simple semi-empirical treatment
(PM3) applied to experimenta structures of selected MDBL-like and HK-like compounds seems to be a
reasonable method that does not produce heterogeneous results in this work. The effect of crystal packing and
symmetry on molecular conformation has been finally proven by applying the systematic computational
procedures as showed in Table G.

Figure H. Fragment defining the torsion angle CH-C-CH2-C (along the bold lines) that describes the relative
position of the phenyl group with respect to a general alkyl group. This fragment was used in the searches of
Cambridge Structural Database (CSD), without any filtering.
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