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Sorting variables by using informative vectors
as a strategy for feature selection in
multivariate regression
Reinaldo F. Teófiloa, João Paulo A. Martinsa and Márcia M. C. Ferreiraa*
J. Chemom
A new procedure with high ability to enhance prediction of multivariate calibration models with a small number of
interpretable variables is presented. The core of this methodology is to sort the variables from an informative vector,
followed by a systematic investigation of PLS regression models with the aim of finding the most relevant set of
variables by comparing the cross-validation parameters of the models obtained. In this work, seven main informative
vectors i.e. regression vector, correlation vector, residual vector, variable influence on projection (VIP), net analyte
signal (NAS), covariance procedures vector (CovProc), signal-to-noise ratios vector (StN) and their combinations were
automated and tested with the main purpose of feature selection. Six data sets from different sources were employed
to validate this methodology. They originated from: near-Infrared (NIR) spectroscopy, Raman spectroscopy, gas
chromatography (GC), fluorescence spectroscopy, quantitative structure-activity relationships (QSAR) and computer
simulation. The results indicate that all vectors and their combinations were able to enhance prediction capability
with respect to the full data sets. However, regression and NAS informative vectors from partial least squares (PLS)
regression, both built usingmore latent variables thanwhen building themodel presented inmost of tested data sets,
were the best informative vectors for variable selection. In all the applications, the selected variables were quite
effective and useful for interpretation. Copyright � 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multivariate regression is a widely established method for
conducting multivariate chemical calibration (determination of a
chemical quantity from measured physical quantities), most
frequently using the inverse model

y ¼ Xbþ e (1)

where the rows of X (I� J) matrix contain the values measured or
calculated at J response variables (e.g. wavelengths, potentials,
sensory attributes and molecular descriptors) for I individual
samples. In the above equation, y is the dependent variable, an
I� 1 vector containing values of the property of interest (e.g.
concentrations, panel scores and biological activity, among
others) determined from a reference method. The J� 1 vector b
contains the unknown calibration regression coefficients and e
represents an I� 1 error vector normally distributed with mean
zero and covariance matrix s2I [1,2].
For each sample, a large number of physical quantities are

measured, frequently several hundreds. So, the classical multiple
linear regression (MLR) cannot be performed and techniques
such as principal components regression (PCR) or partial least
squares (PLS) regression must be applied [1,3].
Although the multivariate calibration methods as PLS and PCR

are able to deal with a large number of highly correlated response
variables (predictors or descriptors) and with small sets of
samples, there are several situations in which better predictions
are obtained when a subset from a larger number of variables is
selected [4–8]. This occurs mainly because in a set of hundreds or
etrics 2009; 23: 32–48 Copyright � 2008
thousands of variables, most of them enclose noise and irrelevant
and/or redundant information. Feature selection is a way to
identify variable subsets that in fact reproduce the observed
values of a dependent variable, i.e. those subsets that are, for a
proposed problem, the most useful to obtain a more accurate
regression model. Although the main emphasis is upon the
prediction, it is desirable that the selected subsets should aid the
chemical interpretation of the regression model, which is highly
relevant for sensorial analysis and quantitative structure-activity
relationships (QSAR), among other areas [3,6,9,10]. Thus, the aim
of variable selection is to reduce significantly the number of
variables to obtain simple, robust and interpretable models [11].
Nowadays, there is considerable interest for variable selection

and the subject has been intensively studied [12,13]. A great
number of procedures for variable selection are available in the
literature [3,14]; the majority is focused on wavelength selection
from spectroscopic data. These procedures can be distinguished
from each other by the searching criteria to locate an optimum
subset [9], but the majority of them is not generalizable and
John Wiley & Sons, Ltd.
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efficient for all types of variables. For example, in chemistry,
diverse analytical techniques provide different types of predictors
and each one presents peculiar and well-defined characteristics.
It is a usual practice among chemometricians to visualize

the plots of informative or prognostic vectors to identify
desirable features from multivariate data. The informative
vectors are those obtained from some mathematical data
treatment using the predictors and/or dependent variables.
These vectors make the standard behavior of the variables more
visible.
In multivariate calibration, the elements of an informative

vector that have high absolute values are intuitively connected
with the regions from original data that improve the predictions.
In fact, if the visualized vector contains the needed information,
the feature selection can be performed from this vector. The
informative vector can be generated from different types of
response variables, because the information they contain is
inherent to variables, no matter their nature.
Several authors [14–16] advocate the use of the regression

vector as a potential tool to select variables in multivariate
calibration. Variables with low regression coefficients would not
contribute significantly for prediction and, hence, should be
eliminated.
Other informative vectors that could be used for variable

selection are those that, in some way, relate responsive variables
with the dependent variable as, for example, the correlation
coefficients that compose the correlation vector [3,12,17,18].
Usually, a poorly correlated variable is not informative and can
be excluded. However, one must pay special attention to such
types of vectors since they bear univariate and not multivariate
information. Besides the regression and correlation vectors, other
types of vectors occurring in the literature [14,19,20] have the
same goal. The strategy of using informative vectors is simple,
intuitive and, in general, leads directly to the interpretation of the
selected variables and also to better predictions of unknowns.
However, in spite of the successful but relatively rare use of

informative or prognostic vectors for selecting variables, little has
Figure 1. Variable selection steps using the OPS method. This figure is
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been found in the literature about algorithm automation,
definition of cut off criterion and vectors combination.
Hoskuldsson and Reinikainen [12,13,21] have proposed

informative vectors and strategies for variable selection.
However, these authors did not compare or combine them with
other well known informative vectors such as regression and/or
correlation vectors.
In this work, a new informative vector is proposed and a new

strategy for automatic multiple variable selection/elimination is
presented. The methodology developed is based upon several
informative vectors and their combinations, introducing a simple
and intuitive automatic procedure for variable selection.
2. THEORY

2.1. Notation

Scalars are defined as italic lower case characters (a, b and c),
vectors are typed in bold lower case characters (a, b and c) and
matrices as bold upper case characters (A, B and C). Matrix
elements are represented by corresponding italic lower case
characters with row and column index subscripts (xij is an
element of X). In some cases, matrices will be written explicitly as
X (I� J) to emphasize their dimensions (I rows and J columns).
The identity matrix is represented as I with its proper dimensions
indicated.
Superscripts t, þ and �1 represent transpose, pseudo-inverse

and inverse operations, respectively. The symbol ^, e.g. ŷ,
represents an estimated matrix, vector or scalar.

2.2. Method: ordered predictors selection (OPS1)

In general, the essence of the method is to obtain a vector
(informative vector) that contains information about the location
of the best response variables for prediction (see Figure 1A). Such
vectors can be obtained directly from calculations performed
with response and dependent variables, or from combinations of
available in color online at www.interscience.wiley.com/journal/cem
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different vectors obtained with the same purpose. Obviously, the
vector length must be equal to the number of response variables
and each position in the vector must be aligned to the
corresponding response. In the second step (Figure 1, B), the
original response variables (X matrix columns) are differentiated
according to the corresponding absolute values of the
informative vector elements obtained previously in step A. The
higher the absolute value, the more important the response
variable, which enables their sorting in descending order of
magnitude in the third step (Figure 1C).
In the fourth step (Figure 1D), multivariate regression models

are built and evaluated using a cross validation strategy. An initial
subset of variables (window) is selected to build and evaluate the
first model. Then, this matrix is expanded by the addition of a
fixed number of variables (increment) and a new model is built
and evaluated. New increments are added until all or some
percentage of variables are taken into account. Quality
parameters of the models are obtained for every evaluation
and stored for future comparison.
In the last step (Figure 1E), the evaluated variable sets (initial

window and its extensions) are compared using the quality
parameters calculated during validations. The model with the
best quality parameters should contain variables with the best
prediction capability and so these are the selected variables.

2.3. The OPS-PLS algorithm

Specifically, the algorithm used in this work consists of the
following steps:
(i) O
ww
btaining informative vectors or their combinations from X
and y;
(ii) B
uilding PLS regression models;

(iii) C
alculating quality parameters by leave-N-out cross vali-

dation and

(iv) C
omparing the quality parameters for the obtained models.
The algorithm has many distinguishing features: (1) it is
computationally efficient when compared to other variable
selection algorithms (e.g. genetic algorithm); (2) it may be
completely automated with different informative vectors and
their combinations; (3) it can be adapted for variable selection
when treating multiway data sets [22] and also (4) it can be used
in methods of variable selection by intervals (e.g. iPLS) or in
discriminant analysis [23].
The PLS method to obtain all informative vectors and the

bidiagonal algorithm for PLS1, were used in this work.
Manne [24] has shown that PLS1 is equivalent to an algorithm

developed by Golub and Kahan [25] for matrix bidiagonalization.
Matrix bidiagonalization is a useful decomposition often
employed as a fast initialization in algorithms for singular values
decomposition [26].
This method considers that any matrix X(I� J) can be written

as:

X ¼ URVt (2)

where U(I� J) and V(I� J) are matrices with orthonormal
columns, i.e. they satisfy UtU ¼ VtV ¼ I, and R(J� J) is a
bidiagonal matrix.
Several papers in the literature describe the interesting relation

between PLS1 and bidiagonal decomposition [24,27–30]. The
bidiagonal decomposition algorithm (PLSBdg), similar to NIPALS
w.interscience.wiley.com/journal/cem Copyright � 200
and SIMPLS, considers the y information during computations.
The PLSBdg algorithm can be summarized as follows [27,29].
(1) in
8 Jo
itialize the algorithm for the first component,
v1 ¼ Xty= Xtyk k; a1u1 ¼ Xv1
(2) fo
r i¼ 2, . . . , h components

2:1: g i�1vi ¼ Xtui�1 � ai�1vi�1

2:2: aiui ¼ Xvi � g i�1ui�1

with,
Vh ¼ ðvi; :::; vhÞ, Uh ¼ ðui; :::; uhÞ and Rh

a1 g1

a2 g2 0

0
BB

1
CC
¼ . .
. . .

.

0 ak�1 gk�1

ak�1

BBB@
CCCA
It can be proved that

XVh ¼ UhRh ! Rh ¼ Ut
hXVh: (3)

The bidiagonal matrices are analogous but not identical
to those derived by singular values decomposition (SVD)
and, therefore, the PCR regression method is slightly different
from PLS.
An important conceptual detail is that the scores calculated by

the bidiagonalization algorithm are different by a normalization
factor from those produced in NIPALS and SIMPLS algorithms
[30]. Ergon [31] and Pell et al. [30] have shown that there is a
difference between the reconstructed matrix obtained by the
PLSBdg method ( X̂h ¼ UhRhV

t
h) and those reconstructed by

NIPALS and SIMPLS methods, becoming smaller with higher
numbers of latent variables.
In this work, one of the informative vectors proposed makes

use of the reconstructed matrix and, therefore, PLSBdg is
fundamental to obtain a consistent reconstructed matrix.

2.4. The informative vectors

2.4.1. Regression vector (Reg.).

The regression vector obtained when multivariate regression is
performed can be defined as the expected change in the response,
per unit change in the variable, if all the variables and responses
are linearly related [32]. In this work, the regression vector was
considered as an informative vector for variable selection.
Once the matrices U, V and R are computed with h

components truncated in R, according to Equation 3, the
regression vector can be estimated directly by solving the least
squares problem as shown in Equation 4.

y ¼ Xb ! y ¼ UhRhV
t
hb ! b̂ ¼ VhR

�1
h Ut

hy (4)

Although the regression vectors obtained by NIPALS or PLSBdg
are the same [29,30], the reconstructed X matrix from the
bidiagonal method with h components is more consistent to
calculate the residual vector. Besides, the PLSBdg algorithm is
significantly more efficient computationally when compared to
NIPALS algorithm.
When using the regression vector for variable selection in the

OPS method, the first question asked is about the number of
components, h, to be used when obtaining this informative
hn Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48
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vector. Firstly, it is proposed in this work to build and validate a
PLS model, fromwhich h¼ hMod is determined. But maybe hMod
cannot generate a regression vector sufficiently informative for
variable selection. To find the best informative vector, a study was
then performed on the full data set by increasing the number of
components in the model, starting from h¼ hMod and carrying
out the variable selection using the OPS algorithm. By varying the
h value, different informative vectors are generated, from which
the best component number (h¼ hOPS) is selected. Therefore,
two optimum numbers of components are employed in this
work, one representing the component number for model
building (hMod.) and the other representing the component
number employed to generate the best informative vector in OPS
method (hOPS).
The algorithm employed to study the regression vector

consists of the following steps.

for h¼ hMod to n components
generate the regression vector for variable selection with
hOPS¼ h;
run the OPS algorithm using the previously generated vector
(use hMod for model building);
store the minimum RMSECV obtained in the selection for all h;
end
plot the component numbers versus RMSECV.

2.4.2. Correlation vector between columns of X and y (Corr)

The Pearson correlation coefficient (R) is a natural population
parameter for bivariate normal distribution used for assessing the
degree of linear association between two variables x and y. It is a
dimensionless measure and lies in the interval from �1 to þ1,
with zero indicating the absence of correlation (but not
necessarily the independence of the two variables). Data falling
exactly on a straight line (sloped upwards or downwards)
indicates that jRj ¼ 1 [33].
The informative correlation vector contains the correlation

coefficients between each predictor xj and the dependent
variable y. This vector shows how each predictor in X is correlated
to y, and high correlation indicates that the corresponding
variable should contain important information for the model. A
disadvantage of this methodology is that the correlation between
a combination of predictors and y is not taken into account. An
expression for the calculation of the correlation vector is shown in
Equation 5

r ¼
aXt ay

I � 1
(5)

where aX and ay, with superscript a, are the autoscaledmatrix and
vector for predictor and dependent variables, respectively.

2.4.3. Residual vector (SqRes)

In data compression methods such as PLS and PCR, when the
matrix is truncated, an estimate for the original matrix
(reconstructed matrix) can be obtained, i.e. X̂h. The reconstructed
matrix with h components should contain the relevant
information needed while the eliminated information is
considered as residuals and defined by Eh ¼ X� X̂h, where X
is the original data matrix. The residual matrix can give
information about important variables in X. When relevant
information for the regression is being transferred to X̂h, each
J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
component carries information from important columns of X into
X̂h and the sum of squared residuals of the corresponding
columns in Eh approaches zero. So, the columns in Eh with low
values of squared sum indicate the more effective variables for
the regression. The informative vector proposed in this case is the
inverse of the sum of squared residuals defined as q, according to
Equation 6

Eh ¼ X� X̂h ! qj ¼
1

etjej
(6)

where ej is the j-th column of Eh.

2.4.4. Covariance procedures vector (CovProc)

Reinikainen and Hoskuldsson [21] have proposed a vector,
named CovProc, to rank and then select the variables. Its
calculation is based on ranking the variables according to their
covariance and selecting ‘an optimal’ number of variables to use
in sequential dynamic systems. The H-principle suggests using
XtyytX as the measure of strength between X and y. The method
CovProc suggests sorting the variables according to weights
derived from XtyytX and judging the subset selection based on
expanding X according to the sorting obtained. The informative
vector is the diagonal of XtyytX.

CovProc ¼ diagðXtyytXÞ (7)

2.4.5. Variable influence on projection (VIP)

The VIP score of a predictor, first published by Wold et al. [34], is a
summary of the importance for the projections to find h latent
variables. The VIP score for the j-th variable, which is a measure
based on the weighted PLS coefficients, can be calculated by
Equation (8). On the other hand, since the average of squared VIP
scores equals 1, the ‘greater than one rule’ is generally used as a
criterion for variable selection [14].

VIPj ¼
J �

Ph
k¼1

t2k v
2
jk

Ph
k¼1

t2k

(8)

where t ¼ RVtb
Attention should be called to the fact that the VIP vector

calculated from Equation 8 using the loadings and scores from
the PLSBdg algorithm is equivalent to those calculated by using
w and t from NIPALS (the weights are the same and the scores
differ by a normalization factor).

2.4.6. Net analyte signal (NAS) vector

For inverse calibration (PLS, PCR, etc.) the multivariate vector net
analyte signal (NAS) is defined as a part of the mixture’s signal
that is useful for prediction [35].
Faber [36] has presented an efficient way to perform the

calculation of the NAS vector. This method is based on the use of
the regression vector since this vector is orthogonal to the
interference signal.
The dot product in the equation yi ¼ btxi þ ewill give only the

contribution of that part of the mixture spectrum x which is
orthogonal to the interference spectra: this part is the NAS vector.
& Sons, Ltd. www.interscience.wiley.com/journal/cem
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According to Ferre et al. [35] and Bro et al. [37], the NAS vector
can be calculated using the following equation

xnasi ¼ ŷiðbtÞþ ¼ ðŷi=btbÞb (9)

Since the NAS vector is obtained for each sample, an average of
the columns of the matrix that contains all vectors is a good
estimate for an informative vector to be employed in the OPS
method.
As in the regression vector, the NAS vector was also built using

the component number h¼ hOPS.

2.4.7. Signal-to-noise (StN) vector

This method was described by Brown [17] and consists in
calculating a signal-to-noise statistic for each variable. As
presented by Miller [18], parameters of a least squares fit
between each intensity variable (xj) to the constituent concen-
trations (y) are calculated according to Equation 10,

y ¼ b01j þ b1xj þ ey;j (10)

where xj is the j-th column in the data matrix X, 1j is a vector of
ones and ey,j is the residual. Once the least-squares fit is made, the
signal-to-noise (StN) vector for variable j is then calculated

StNj ¼
b̂1

ð êty;j ; êy;jÞ
(11)

where êy;j ¼ y� b̂01j � b̂1xj . This procedure is repeated for each
variable used in the data matrix X.

2.4.8. Vectors’ combinations

Besides the vectors Reg, Corr, SqRes, CovProc, VIP, NAS and StN,
their combination also can be used to search the most predictive
variables. This combination is obtained by performing the
product of the absolute value of each element in one vector times
the corresponding element in the other vector. Before doing that,
the vectors are normalized. In the present work, pairs of these
vectors were investigated.
To make the graphical representation straightforward, an

abbreviation for vectors pairs was used, i.e. Reg-Corr (RC);
Reg-SqRes (RS); Reg-CovProc (RCP); Reg-VIP (RV); Reg-NAS (RN);
Reg-StN (RStN) and so on for other pairs.

2.4.9. Model evaluation

The quality of the models is assessed by the root mean square
error (RMSE) calculated according to Equation 12 and the
correlation coefficient R given by Equation 13,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPIm
i¼1

ðyi � ŷiÞ2

Im

vuuut
(12)

R ¼

PIm
i¼1

ðŷi � ŷÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPIm
i¼1

ðŷi � ŷÞ2ðyi � yÞ2
s (13)
www.interscience.wiley.com/journal/cem Copyright � 200
where ŷ and ŷ are the scalar and vector of estimated values,
respectively, y is a scalar of mean values in y and Im is the number
of samples. When internal validation (cross validation—CV) is
applied, Im is the number of samples in the calibration set
(training), and the error and correlation coefficients are named
RMSECV and Rcv, respectively. For external validation (a new set of
samples), Im is the number of predicting samples (P) and in this
case, the error and correlation coefficients are named RMSEP and
Rp, respectively.
3. EXPERIMENTAL

3.1. Data sets

Six data sets were used in this work. They were obtained from
different sources, i.e. near-Infrared (NIR) spectroscopy, Raman
spectroscopy, fluorescence spectroscopy, gas chromatography
(GC), quantitative structure activity relationship (QSAR) data and
finally, one simulated data set.
The full data sets were split into training and external validation

sets. Approximately 30% of samples were selected by the
algorithm of Kennard and Stone [38], available on the Internet at
http://www.vub.ac.be/fabi/publiek/index.html, to be the external
validation set.
For cross validation, the method leave-N-out was applied,

where N was set as 10% of total sample number in the train-
ing set.

3.1.1. NIR data set

The first data set was composed by NIR spectra of diesel samples
measured at the Southwest Research Institute (SWRI) in a project
sponsored by the US Army. The data set was taken from the
Eigenvector Research homepage at http://www.eigenvector.com.
The following physical properties were modeled: bp50, boiling
point at 50% recovery/8C (ASTM D 86); CN, cetane number
(equivalent to octane number for gasoline, ASTM D 613); d4052,
density, gmL�1, 158C, (ASTM D 4052); freeze, freezing tempera-
ture of the fuel/8C; Total, total aromatics, mass % (ASTM D 5186)
and Visc., viscosity, cSt/408C. In this work, the data was split
according to that on the web site without high leverage samples.
Also, the spectra obtained were preprocessed by taking the first
derivative. The number of samples in the training set/test set for
bp50, CN, d4052, freeze, Total and Visc. were 113/113; 113/112;
122/121; 116/115; 118/118 and 116/116, respectively.
Further information about this data can be found at http://www.

idrc-chambersburg.org/shootout_2002.htm or in Reference [39].
3.1.2. Raman data set

This data set from literature is available at http://www.models.
kvl.dk/research/data/ and presented by Dyrby et al. [40]. The data
set consisted of Raman scattering for 120 samples using 3401
wave numbers in the range of 200–3600 cm�1 and using the
average of 64 scans for each sample. The dependent variable
referred to the amount of active substance (containing a C––N
group) in Escitalopram1 tablets in %w/w units. More exper-
imental details can be obtained in the literature [40].
Second derivative pre-treatment was applied to the samples

before building the model.
8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48
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3.1.3. Fluorescence data set

This data set was designed by Bro et al. [41] for the study of
several topics in fluorescence spectroscopy and can be found at
http://www.models.kvl.dk/research/data/. The selected analytes
have very similar excitation and emission spectra. Consequently,
the calibration problem is rather complicated.
Six different analytes were used: catechol (CATE), hydro-

quinone (HYDR), indole (INDO), resorcinol (RESO), L-tryptophane
(TRYP) and DL-tyrosine (TYRO). The set used in this work
contained 404 mixtures of 2–4 fluorophores. The concentration
ranges of the fluorophores in the samples were: CATE
(0–87mmol L�1), HYDR (0–22mmol L�1), INDO (0–5.46mmol L�1),
RESO (0–39.96mmol L�1), TRYP (0–7.44mmol L�1) and TYRO
(0–12.14mmol L�1). Only the first replicate measurement of each
sample was used in the present work.
The scan settings emission wavelengths were 230–500 nm

(recorded every 2 nm) and excitation wavelengths 230–320 nm
(recorded every 5 nm). For further experimental details see
Reference [41].
Prior to analysis, part of the recorded data was removed

(Raman and Rayleigh scattering) and the region removed was
interpolated using the algorithm from Bahram et al. [42] available
at http://www.models.kvl.dk/source/. This procedure was carried
out in order to avoid the presence of any scattering effects.
Besides, the excitation wavelengths 230–240 and 300–320 nm
were excluded, together with the emission wavelengths 230–296
and 422–500 nm. The 3D array generated for each sample with
dimensions 19� 136 (excitation� emission) was cut down to
11� 62, corresponding to the 11 emission spectra recorded from
each experiment. An unfolding was performed to apply PLS
regression. Thus a total of 682 variables were investigated for
each sample.
3.1.4. GC data set

The data GC was selected from the examples available in
Pirouette software [43]. This set is formed by 35 responses
consisting of peak areas for a set of gas chromatographic runs on
fuel samples and 3 dependent variables made up from
measurements of the following physical properties: flash point,
specific gravity and freeze point. A total of 16 samples were
measured and one was detected as outlier and removed. Due to
the small data set, the OPS method was carried out using all
samples and after feature selection the training set and test set
were split into 11 and 4 samples, respectively.
3

3.1.5. Data set QSAR

The data set QSAR is from our research group [44] and available at
http://pcserever.iqm.unicamp.br/�marcia//hiv1qsardata.html.
The 14 molecular descriptors for 48 HIV-1 protease inhibitors
were generated on the basis of 1D and 2D formulas and the
dependent variable was the in vitro inhibition activity [45],
pIC50¼�log IC50. The data set was split into 32 compounds for
the training set and the other 16 were for external validation.

3.1.6. Simulated data set

The simulated data set was proposed by one of reviewers of this
paper and consisted of 20 mixtures simulated by using UV-type
spectra from 4 analytes and their respective concentrations
J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
randomly generated. The data set was split into 10 samples for
the training set and 10 samples for external validation.

3.2. Programs

All data analyses were performed using home-built functions
written for Matlab 7 (MathWorks, Natick, USA). The OPS1 Toolbox
routines, implemented in MATLAB 7, were registered and are
available on the Internet at http://lqta.iqm.unicamp.br
4. RESULTS AND DISCUSSION

4.1. NIR data set

Recent advances in process instrumentation (using NIR spec-
troscopy, in particular) and chemometric methods have led to the
popularization of NIR spectroscopy.
For oil fractions and diesel fuels, the NIR spectroscopic region

(750–1550 nm) is especially attractive because most absorption
bands observed in this region arise from overtones and
combination bands of carbon-hydrogen (C-H) stretching
vibrations of hydrocarbon molecules.
Figure 2 presents the minimum RMSECV obtained by

leave-eleven-out cross validation. Besides the full data set (first
bar from bottom and named Full), when no variables were
excluded, results for the seven informative vectors and their
combinations introduced in the previous session are shown.
Vertical dot lines indicate the RMSECV value for full data set (with
no variable selection) and for the minimum RMSECV obtained by
the OPS method. A significant decrease in RMSECV values
occurred when other informative vectors were combined with
Reg. The subset of variables selected by the following informative
vectors: Corr, SqRes, CovProc, VIP and StN presented reasonable
improvement in the prediction quality of the models principally
when combined with Reg (RC, RS, RCP, RV and RStN), but the
results are not still comparable to Reg and NAS vectors and their
combination RN.
It was observed that when the regression vector was used as

an informative vector in the OPS algorithm, the number of
components to build this informative vector played a primordial
role to obtain good results. The study performed by increasing
the number of components to build the informative vector while
keeping constant the number of components (hMod.) to build the
model was fundamental. It was found that the optimum number
of components (hOPS) to build a regression vector with the
purpose of variable selection was, in most cases, significantly
higher than hMod.
Typical variations of RMSECV as the number of components is

increased are presented in Figure 3. Three replicates were carried
out and the mean value of minimum errors (RMSECV) and its
standard deviation bar (error bar) are shown for each selection.
The number of components for minimum RMSECV indicates
h¼ hOPS. Figure 3 indicates that the number of components with
minimum error is significantly higher than those for building the
model. In Figure 2, for comparison, each result was obtained with
hMod equal to 9 for Visc. and 10 for Total. This number of
components for each specific physical property was kept
constant for the window and each added increment.
It seems that when an excessive number of components is

included to calculate the informative vector, more information
from each variable and its real contribution to the model seems
to be better represented. This is an empirical observation and it
& Sons, Ltd. www.interscience.wiley.com/journal/cem
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Figure 2. Minimum RMSECV obtained for the seven informative vectors and their combinations used in the OPS algorithm. The standard deviation of

three replicates is represented by a horizontal error bars. These results were obtained for two physical properties Visc. (A) and Total (B). The full bar

RMSECV obtained (right hand dotted line) were 0.124 and 0.632 for Visc. and Total, respectively. The best results (left hand dotted line) obtained were
0.090 and 0.477 for Visc. and Total, respectively. Other good values are indicated inside the bars for comparison.

R. F. Teófilo, J. P. A. Martins, M. M. C. Ferreira
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depends upon the data structure. More statistical studies are
necessary, however these are out of the scope of the present
work.
NAS vector, which is similar to the regression vector for inverse

calibration, was also very efficient to improve the prediction
when using h¼ hOPS. The vectors SqRes and VIP, which are also
dependent upon the number of components, did not show
better results when using h¼ hOPS, as obtained for the
regression and NAS vectors. Thus, regression and NAS vectors
were built with a number of components equal to hOPS while
SqRes and VIP vectors were built with a number of components
equal to hMod.
Figure 3. Plots of RMSECV versus the number of components for building th
deviations of three replicates. Three physical properties are considered: (A)

hOPS¼ 11

www.interscience.wiley.com/journal/cem Copyright � 200
Figure 4 illustrates both regression vectors applied in different
situations in this context. The absolute values of regression
coefficients are larger for hOPS than for hMod.
Figure 5 shows the OPS plots for detection of the best points

for selection/elimination of variables. When the variables are
arranged into descending order as indicated by the informative
vector and the first window is selected, a decrease in RMSECV and
increase in Rcv is expected when expanding this first variable
subset by adding new variables. When the optimal number of
variables is reached, the error increases and the Rcv decreases
with the inclusion of noninformative variables. The region where
values of minimum RMSECV and maximum Rcv occur is the
e regression vector used as informative vector. The bars are the standard
BP50 with hOPS¼ 18; (B) D4052 with hOPS¼ 12 and (C) Freeze with

8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48



Figure 4. Regression vectors built with different numbers of components, hMod (black solid line) and hOPS (red doted line). (A) Physical property BP50

with hMod¼ 8 and hOPS¼ 18; (B) physical property D4052 with hMod¼ 6 and hOPS¼ 12. This figure is available in color online at www.
interscience.wiley.com/journal/cem

Figure 5. Typical OPS plots. The vertical arrows indicate the set of variables with better prediction ability. The doted circles indicate the optimum
regions. The horizontal dashed lines indicate the statistical parameters using the full data set. These results were obtained for the physical properties

(A) Visc. and (B) Total. For comparison, each result was obtained with the maximum number of hMod equal to 9 for Visc. and 10 for Total. The maximum

number of components was fixed in the window and each added increment.

Sorting variables feature selection in multivariate regression
optimum (vertical arrows with dotted circles) for the selection/
elimination of variables. The horizontal dashed lines in the plots
indicate the RMSECV or Rcv for full data.
For all physical properties of this data set, the results obtained

when using the variables indicated by the optimum regions are
significantly better than those obtained when all variables (full
data set) were used. These results suggest that the proposed
methodology is in fact very efficient for variable selection.
Table I shows results obtained for the models built with all

variables (full model) and selected variables. A meaningful
reduction of the number of variables with improvement in
statistical parameters was obtained. Note that the vectors Reg
and NAS are important vectors either alone or in combination.
The selected variables are shown in Figure 6 where well

defined regions are clearly observed. Notice that baseline regions
were not selected and peaks with rather clear physical meaning
were selected. This is a great advantage of the OPS method
compared to the other methods.
3

4.2. Raman data set

Raman is a rapidly developing spectroscopic technique that,
unlike infrared spectroscopy (IR), does not require special
sampling techniques. It gives a measure of the weak inelastic
scattering created by interaction between the incoming light and
J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
the species present in the sample [40]. Comparing the raw
spectrum from the pure active substance containing the cyanide
group (C––N) [40], with that from the investigated tablets, it is
visible that the cyanide group is easily detected in this region. The
distinct peak at 2233 nm seen in the tablet spectrum originated
from the C––N group. Several others peaks from the active
substance can be seen in the tablet spectrum (e.g. at 1614 and
3075 nm), but none are as specific as the cyanide peak. The tablet
spectra contain several peaks from the excipients including three
intense peaks from titanium dioxide in the coating material (395,
511 and 634 nm) and several peaks from cellulose (1095, 1121,
1380 and 2900 nm). There is a strong fluorescence background
originating from an unknown residual in the primary micro-
crystalline cellulose excipient. Besides, cellulose contains trace
amounts of organic substances that can be highly fluorescent. To
eliminate this fluorescence background the second derivative of
the spectra was calculated.
Figure 7A shows the trend in RMSECV with increasing the

number of components to generate the informative vectors
(regression vector and NAS, SqRes and VIP). The leave-twelve-out
cross-validation method was used to calculate the RMSECV. The
value hOPS¼ 9 was used to obtain the informative vectors and
hMod¼ 3 for model building. The vectors Reg, NAS and the
combination RS, RN and SN, which are shown in Figure 7B yielded
the best results (RMSECVffi 0.47). Hence, these vectors could be
used to select variables. The vertical lines in Figure 7B indicate the
& Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table I. Statistical results obtained from NIR data set for all physical properties

Full model OPS model Full model OPS model Full model OPS model

BP50 CN D4052

Vector — Reg. — Reg.-Corr. — Reg.
hOPS — 18 — 11 — 12
hMod. 8 6 6
nVars 401 60 401 105 401 40
RMSECV 4.51 2.97 1.99 1.91 2.5� 10�3 1.3� 10�3

Rcv 0.953 0.979 0.802 0.820 0.977 0.994
RMSEP 4.60 3.90 2.09 2.02 2.5� 10�3 1.3� 10�3

Rp 0.963 0.976 0.811 0.826 0.975 0.992

Full model OPS model Full model OPS model Full model OPS model

Freeze Total Visc.

Vector — Reg. — Reg. — NAS
hOPS — 11 — 18 — 15
hMod. 7 10 9
nVars 401 55 401 45 401 80
RMSECV 2.76 2.12 0.63 0.48 0.12 0.09
Rcv 0.743 0.828 0.994 0.995 0.952 0.972
RMSEP 3.24 2.65 0.66 0.64 0.13 0.10
Rp 0.630 0.771 0.994 0.995 0.944 0.968

Figure 6. Selected variables from the original spectra for each physical property. (A) BP50, (B) CN, (C) D4052, (D) Freeze, (E) Total and (F) Visc. All

calculations were performed on the first derivative spectra. This figure is available in color online at www.interscience.wiley.com/journal/cem

www.interscience.wiley.com/journal/cem Copyright � 2008 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48
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Figure 7. (A) Typical decrease of RMSECV with an increasing number of components to build the regression vector used as informative vector;
(B) minimum RMSECV obtained for various informative vectors used in the OPS algorithm and for the full data set (other good values are indicated inside

the bars for comparison); (C) OPS plot indicating the optimum region for selection/elimination of variables (dotted ellipses). The vertical arrow indicates

the set of variables (left of the arrow) with better prediction ability. The horizontal dashed lines indicate the statistical parameters using the full data

set. The vertical and horizontal error bars are, respectively, the standard deviations of three replicates in the graphs A and B.

Sorting variables feature selection in multivariate regression
maximum RMSECV (0.685, right vertical line) and the minimum
RMSECV (0.463, left vertical line). The combination Reg.-SqRes
showed the least RMSECV value and so it was selected as the
informative vector. Note that in Figure 7B the error of the SqRes
vector is very close to that of the full data set. However, when
SqRes was combined with Reg., (RS), a significant decrease in
RMSECV was observed. This result justifies the study of the
informative vector combinations.
Figure 7C shows the OPS plot indicating the optimum region

for selection/elimination of variables (vertical arrow and ellipses).
From 3401 original variables, 595 were selected with significant
improvement of the prediction ability of the model. The first
window and increment values in the OPS algorithmwere 300 and
5, respectively.
Table II. Statistical results for active substance for data set
Raman

Full model OPS model

Activity

Vector — Reg.-SqRes
hOPS — 9
hMod. 3
nVars 3401 595
RMSECV 0.69 0.44
Rcv 0.800 0.924
RMSEP 0.66 0.49
Rp 0.792 0.890

J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
After variable selection, the data set was split into 85 samples
for modeling and 35 samples for external validation.
The statistical parameters for the final model are shown in

Table II. The results for the full model (no variables excluded) are
included for comparison. Approximately 18% of total variables
were selected and a meaningful improvement in the prediction
capacity was obtained. The selected variables are marked in the
spectra of Figure 8. Note that selected regions are coherent with
peaks obtained from the active substance. Several variables were
selected in the region around of 2233 nm originating from the
Figure 8. Selected variables for the active substance containing the

cyanide group (C––N). Variable selection was performed on the second
derivative spectra. This figure is available in color online at www.

interscience.wiley.com/journal/cem
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Figure 9. (A and B) Pure excitation and emission spectra for the six fluorophores. The regions inside the vertical dotted lines in plots A and B were used

for data analysis. (C) Representative landscape spectrum from one mixture of fluorophores. This figure is available in color online at www.interscience.

wiley.com/journal/cem
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cyanide group. The spread of selected variables along the spectra
is justified due to the presence of several other peaks in the tablet
spectrum derived from the active substance [40] and also to the
complexity of samples. Dyrby et al. [40] have tried to select
variables by using the iPLS method, but no improvement was
obtained. The use of a genetic algorithm for variable selection in
this data set is also not appropriate because it is time consuming
due to the high number of variables. On the other hand, the OPS
method was computationally efficient, and its high potential to
select interpretative variables has been shown again in this
example.
4.3. Fluorescence data set

Fluorescence spectroscopy has been used in many scientific
fields such as chemistry, medicine, environmental and food
science. However, the fluorescence signal can be rather complex
and, therefore, the analysis may become complicated owing to
interferences, scattering, overlapping signals, etc. [46].
When the fluorescence spectrum of a sample is measured at

several emission and excitation wavelengths, the data analysis
can be carried out by using multi-way methods, or applying
two-waymethods on the unfoldedmatrices. In this work the data
was unfolded and the PLS regression method employed. Such
types of data contain several peaks with different intensities and
with a relatively symmetric behavior. Besides, the excitation and
emission bands are highly overlapped as shown in Figure 9. These
two factors make this data set very complicated for the selection
of interpretable variables from multiple peaks.
Plots for determination of the number of components, hOPS, to

build the informative regression vectors that will be used for
variable selection are shown in Figure 10. As expected, hOPS
values [12 for CATE (Figure 10A), 9 for INDO (Figure 10B), 9 for
TRYP (Figure 10C) and 10 for TYRO (Figure 10D)], were higher
than hMod, which corresponds to the first point in each plot
(hMod¼ 6, except for HYDR and INDO where hMod¼ 5).
The OPS plots in Figure 11 show distinct trends of RMSECV for

different analytes. However, for all analytes, a few variables were
selected and the improvements were significant, as observed in
www.interscience.wiley.com/journal/cem Copyright � 200
the plots with a wide gap between values for the full data set
(horizontal dashed lines) and optimum region for selection/
elimination of variables (indicated by dotted circles).
Table III shows significant improvement in the prediction

ability of models with a few variables, except for HYDR. An
interesting fact observedwas that the vector Corr has potential as
an informative vector for variable selection, especially when
combined with the Reg vector. However, the vector Reg is once
more the best informative vector for variable selection.
Figure 12 shows the variables selected by the OPS method.

Note that specific peaks were selected, where each peak
corresponded to the emission spectra of a given excitation
wavelength. Within each peak selected specific wavelengths
were chosen. In all cases an interpretation of selected variables is
possible when comparing with the respective excitation and
emission wavelengths from pure spectra (see Figure 9).
The variables selected for CATE are approximately located in

the center of excitation band where most of the peaks are
superimposed and at short wavelengths from emission spectra
(Figures 12A and 12Az). For RESO (Figures 12B and 12Bz) and
TYRO (Figures 12C and 12Cz), similar spectral regions are
expected. It is very clear that the selected variables are situated
mainly in the central part of excitation spectra and at short
wavelengths of the emission band. Finally, for TRYP, though the
position in excitation and emission spectra are dislocated to
longer wavelengths (see pure spectra in Figures 9A and B), the
selected variables follow exactly the same tendency, where the
center to right part of excitation band and final part of
emission spectra were indicated by the OPS method
(Figures 12F and 12Fz). For other phenols (not shown), the
behavior follows the expected trends.
This conclusion reinforces the high performance of the OPS

method in selecting meaningful variables.
4.4. GC data set

A constant issue in industry is the analysis of finished products for
quality control and chromatography has shown to be an
extremely versatile technique in this context. The data set used
8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48



Figure 10. Decrease of RMSECV with increasing number of components to build the regression vector used as an informative vector. The error bars are

the standard deviations of three replicates. This behavior is illustrated for (A) CATE, (B) INDO, (C) TRYP and (D) TYRO.

Sorting variables feature selection in multivariate regression
here was extracted from PirouetteTM package and contains peak
areas from gas chromatography applied to fuel. This example is a
challenge to improve the prediction power by variable selection.
In this case, the OPS algorithmwas applied to the autoscaled data
using leave-one-out cross-validation.
Figure 11. OPS plots for (A) CATE, (B) INDO, (C) TRYP and (D) TYRO. The hor

arrows indicate the set of variables (left from the arrow) with better predict
elimination of variables. For comparison, each result was obtained with a fixe

INDO where hMod¼ 5. The cross validation method used was leave-twenty

J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
Table IV shows the improvement in themodels obtained by the
selected peak areas using the OPSmethod. The variables selected
by importance in decreasing order were: flash point [12, 16 and
32]; specific gravity [8, 31 32, 27, 26, 2, 28 and 25]; freezing point
[18, 29, 24 and 16].
izontal dashed lines show statistical parameters for the full data set. The

ion ability. The dotted circles indicate the optimum region for selection/
d number hMod equal to 6 for the majority of analytes, except HYDR and

five-out.

& Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table III. Statistical results for all analytes from the fluorescence data set

Full model OPS model Full model OPS model Full model OPS model

Catechol Hydroquinone Indole

Vector — Reg. — Reg.-SqRes — Reg.
hOPS — 12 — 10 — 9
hMod. 6 5 5
nVars 682 80 682 30 682 30
RMSECV 3.66 2.40 1.37 1.31 0.24 0.18
Rcv 0.992 0.996 0.983 0.985 0.989 0.994
RMSEP 4.55 3.59 1.27 1.25 0.34 0.26
Rp 0.990 0.995 0.989 0.989 0.986 0.992

Full model OPS model Full model OPS model Full model OPS model

Resorcinol L-Tryptophane DL-Tyrosine

Vector — Reg.-Corr. — Reg.-Corr. — Reg.
hOPS — 14 — 9 — 10
hMod. 6 6 6
nVars 682 20 682 120 682 60
RMSECV 1.96 1.09 0.21 0.13 0.89 0.52
Rcv 0.949 0.984 0.994 0.998 0.976 0.992
RMSEP 3.29 1.84 0.23 0.22 1.54 0.91
Rp 0.956 0.987 0.997 0.997 0.951 0.983

R. F. Teófilo, J. P. A. Martins, M. M. C. Ferreira

4
4

4.5. QSAR data set

Variable selection is essential in QSAR studies. A good and useful
QSAR model for prediction and interpretation has low errors and
must be understandable from the chemical and biological points
Figure 12. Selected variables for the four phenolic compounds. Each peak co

of the selected CATE emission peaks, (B) RESO, (Bz) zoom of the selected RESO

and (D) TRYP, (Dz) zoom of the selected TRYP emission peaks.

www.interscience.wiley.com/journal/cem Copyright � 200
of view. Thus, variable selection is essential to obtain a well
interpretable model.
The OPS algorithm was applied to the autoscaled data using

leave-one-out cross-validation and the results can be seen in
Table V.
rresponds to one of the 11 emission spectra recorded. (A) CATE, (Az) zoom

spectral region, (C) TYRO, (Cz) zoom of the selectd TYRO emission peaks

8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48



Table IV. Statistical results from different models* of physical properties obtained from GC peak areas

Full model OPS model Full model OPS model Full model OPS model

Flash Spec grd Freeze

Vector — Reg. — Reg. — NAS
hOPS — 2 — 4 — 9
hMod. 1 3 3
nVars 35 3 35 8 35 4
RMSECV 8.03 7.28 0.005 0.003 2.99 1.29
Rcv 0.450 0.520 0.316 0.724 0.361 0.910
RMSEP 4.92 2.48 0.009 0.002 3.65 1.34
Rp 0.683 0.993 �0.044 0.950 0.241 0.841

*The cross validation method used was leave-one-out.

Table V. Statistical results for the QSAR data set

Full model OPS model

Vector — Reg
hOPS — 3
hMod 3 1
nVars 14 3
RMSECV 0.53 0.47
Rcv 0.92 0.94
RMSEP 1.12 1.09
Rp 0.90 0.91

Sorting variables feature selection in multivariate regression
The results obtained after variable selection are slightly better
than those obtained with all variables (Table V). The three
variables selected were: X9, X10 and X11 (see Reference [44]). X9
is the effective number of substituents on the central chain (a
steric-geometrical descriptor). X10 is the number of potential
hydrogen bonds (an electronic-geometrical descriptor) and X11
Figure 13. Plots for model validation. Chance correlation plot (A) and leave

(B) and Q2 (C).

J. Chemometrics 2009; 23: 32–48 Copyright � 2008 John Wiley
is the effective number of ring substituents (a steric-geometrical
descriptor). The selection of these three descriptors (variables)
can be well understood from both the chemical and the
chemometric points of view: (1) the descriptors are of complex
natures, including steric, geometrical, electronic, hydrogen
bonding and even hydrophobic features of the treated
molecules; (2) the descriptors are good representatives of
clusters that can be seen in exploratory analysis; (3) the absolute
values of the regression vector elements are the greatest for
these descriptors and (4) among correlation coefficients between
the biological activity and molecular descriptors, the greatest
absolute values are observed for X9 and X11. The model with the
three selected variables, as has been just mentioned, is justified in
terms of chemical concepts, and it presents an interesting
alternative to chemical interpretation of interactions between the
HIV-1 protease and inhibitors when compared to the model with
fourteen variables reported in literature [44].
In this example, the PLS model was further validated by

leave-N-out crossvalidation, where N varied from 1 to 5, to check
the robustness of the model. Chance correlation was tested by
performing ten y-randomizations according to Wold and Eriksson
[47]. These are standard validation procedures applied to QSAR
-N-out crossvalidation (N varied from 1 to 5) plots with N versus RMSECV

& Sons, Ltd. www.interscience.wiley.com/journal/cem

4
5



Table VI. Statistical results for all analytes from the
simulated data sets*

Full
model

OPS
model

Full
model

OPS
model

Analyte 1 Analyte 2

Vector — Reg-StN — Reg.
hOPS — 6 — 7
hMod. 4 4
nVars 100 42 100 28
RMSECV 0.014 0.0028 0.0136 0.0047
Rcv 0.999 1.000 1.000 1.000
RMSEP 0.0123 0.0028 0.0126 0.0037
Rp 1.000 1.000 1.000 1.000

Full
model

OPS
model

Full
model

OPS
model

Analyte 3 Analyte 4

Vector — Reg-Corr — Reg.
hOPS — 7 — 7
hMod 4 4
nVars 100 57 100 40
RMSECV 0.0173 0.0137 0.0154 0.0062
Rcv 0.999 1.000 0.999 1.000
RMSEP 0.0039 0.0028 0.0100 0.0051
Rp 1.000 1.000 1.000 1.000

*The cross validation method used was leave-one-out.

Figure 14. Selected variables for the four-component simulated data.

indicates the analyte being studied.

www.interscience.wiley.com/journal/cem Copyright �
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data as strongly suggested by the QSAR scientific community.
The original data was randomized prior to leave-N-out cross-
validation and y-randomization. These results are shown in
Figure 13.
According to Figure 13A, it is possible to conclude that there is

no chance correlation using the selected variables. Besides that, a
robust model was obtained as can be observed from results of
leave-N-out crossvalidation (Figure 13B). This application reaf-
firms the great potential of the OPS method for interpretable
variable selection.
Althought not applied in this work, a strategy of using the OPS

method for obtaining a substantially reduced number of
variables (which are important in QSAR/QSPR modeling) can
be carried out through feedback of the selected variables. This
consists in performing the OPSmethod several times and, in each
run, only the selected variables are used as input data in the next
run. The procedure is repeated until satisfatory RMSECV and
variable numbers are obtained.

4.6. Simulated data

A study using the simulated data described in the experimental
session was performed to verify the OPS ability in selecting
interpretable regions. Informative regions were selected for all
four components. The improvement in the statistical parameters
for all models can be confirmed in Table VI when a significant
decrease in RMSEP values was observed after feature selection. In
all performed selections the informative vector selected was built
with hOPS> hMOD. For analytes 2 and 4 the regression vector
was the best informative vector. However, for analytes 1 and 3, its
alyte 1, (B) analyte 2, (C) analyte 3 and (D) analyte 4. The black solid line

8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 32–48
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combination with other vectors was necessary for obtaining
better results. This makes clear the necessity of studying other
related vectors and the combinations among themselves.
Figure 14 shows the selected regions and the pure spectrum
of the four components. The densest regions for analyte 1 are in
the middle and far right side of the pure spectrum and for
analyte 3, two informative regions one in the beginning and
another at the end were selected, indicating that in both cases
the selected variables are indeed informative. For these two
analytes, the informative vector was composed by a combination
including the regression vector. Variable selection was also very
effective for analyte 2. In the case of analyte 4, the best results
were given when using the regression vector per se and hOPS¼ 7
and hMOD¼ 4. For this data set, although there are several
variables selected in the far left side, the results can be considered
reasonable for interpretation, since the relevant variables were
also selected.
5. CONCLUSIONS

The application of the OPS method enables variable selection in
analysis of multivariate data sets with abilities to
(1) im
J. C
prove the model’s prediction power;

(2) im
prove the interpretability of the selected variables;

(3) r
educe significantly the number of variables in the final

model;

(4) b
e useful for different data set types and

(5) b
e a feature selection method, simple and effective.

Due to the criteria presented to select variables, this
methodology has shown to be robust and avoid overfitting
and chance correlation.
Among all vectors investigated, the regression vector Reg.

and the correlated vector NAS are the most promising to sort
the best variables. Moreover, a new criterion to choose the
number of components to define the Reg. and NAS vectors is
presented. Applying this criterion, the number of components
selected to define Reg. and NAS is higher than that used to build
the model.
The other vectors, VIP, CovProc, SqRes, StN and their

combinations, although having lower performance with respect
to Reg. and NAS vectors in the examples presented, could be
more appropriate for some other specific data types. Besides,
other vectors can be introduced in the future.
Although OPS was used in tandem with PLS regression, it can

be combined with other regression methods.
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1

Sobre Dados Cromatográficos. 148 ENQA,
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