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a b s t r a c t

Quantitative analyses involving instrumental signals, such as chromatograms, NIR, and MIR spectra have
been successfully applied nowadays for the solution of important chemical tasks. Multivariate calibration
is very useful for such purposes and the commonly used methods in chemometrics consider each sample
spectrum as a sequence of discrete data points. An alternative way to analyze spectral data is to consider
eywords:
upport vector regression
unctional Data Analysis
ultivariate calibration

each sample as a function, in which a functional data is obtained. Concerning regression, some linear
and nonparametric regression methods have been generalized to functional data. This paper proposes the
use of the recently introduced method, support vector regression for functional data (FDA-SVR) for the
solution of linear and nonlinear multivariate calibration problems. Three different spectral datasets were
analyzed and a comparative study was carried out to test its performance with respect to some traditional
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with FDA-SVR suggest tha

. Introduction

With the fast development of instrumental analysis equipments,
uch as spectrophotometers, chromatographers, signal analyzers
nd other modern measurement devices, huge amounts of data, as
igh-resolution digitized functions, are generated nowadays. As a
onsequence, regression tasks in which a predictor variable is some
ype of functional data (FD), and not of a low-dimensional vector,
re quite common. For example, the prediction of chemical physical
roperties of an industrial product from its spectral function is very

mportant nowadays [1,2].
The direct application of classical multivariate regression meth-

ds for this type of data exhibits serious limitations. Indeed,
igitized functions (e.g., spectral data) are generally represented
y high-dimensional vectors whose coordinates are strongly corre-
ated. Furthermore, usually the dimension of such vectors greatly
xceeds the number of independent observations (e.g., the number
f measured spectra). In such situations, standard regression anal-

sis leads to ill-posed inverse problems, which causes a number of
ifficulties. In practice, there are a number of approaches to tackle
hese deficiencies. One of the commonest solution is to use dimen-
ion reduction methods together with linear regression, mainly

∗ Corresponding author. Tel.: +53 727 21670; fax: +53 727 30045.
E-mail address: nhernandez@cenatav.co.cu (N. Hernández).
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mometrics such as PLS, SVR and LS-SVR. The satisfactory results obtained
n be an effective and promising tool for multivariate calibration tasks.

© 2008 Elsevier B.V. All rights reserved.

rincipal Component Regression (PCR) and Partial Least Squares
egression (PLSR) [3]. Whereas those methods generally give satis-

actory results, nonlinear relations can only be modeled in a limited
ay by taking into account more latent variables.

Another way to deal with these problems consists in using vari-
ble selection methods to keep only a small number of relevant
pectral variables [4,5]. Those methods are less sensitive to overfit-
ing and lead to an easy interpretation of the results, but they are
enerally quite slow. Although there are some works [6] aimed at
mproving the computational time of the variable selection meth-
ds.

Functional Data Analysis (FDA) is an extension of traditional
ultivariate analysis that is specifically oriented to deal with obser-

ations of functional nature [7]. For this, each object is characterized
y one or more continuous real-valued functions, rather than by
finite-dimensional vector. This allows applying functional pro-

essing techniques such as derivation, integration, etc. On this
asis, several classical multivariate statistical methods have been
xtended to functional data (FD). Concerning regression, the first
orks in this direction were focused on linear models [7,8]. Also,

ome dimensionality reduction approaches for linear regression,

uch as PCR and PLSR have been generalized to FD [9–12]. More
ecently, a number of estimation methods for functional non-
arametric regression models have also been introduced, namely,
stimators based on functional data adaptations of classical neural
etworks [13], Naradaya-Watson Kernel (NWK) estimators [14,15]

http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:nhernandez@cenatav.co.cu
dx.doi.org/10.1016/j.aca.2008.10.063
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nd regularization in Reproducing Kernel Hilbert Spaces (RKHS)
16]. These nonparametric techniques require a high amount of
omputer memory to encode the estimates in order to make future
redictions. To avoid this drawback Hernández et al. [17] introduced
upport vector (SV) regression methods for functional data.

The main goal of this paper is to demonstrate the feasibility
nd practical performance of Support Vector Regression for func-
ional data (FDA-SVR) in the solution of both linear and nonlinear

ultivariate calibration chemical problems. Additionally, the per-
ormance of this new methodology regarding other well known

ultivariate calibration methods used in chemometrics such as
he traditional PLS and others based on support vectors such as
upport vector regression (SVR) [18,19] and Least Square Support
ector Machines (LSSVM) [20], is shown.

. Support vector estimators for functional nonparametric
egression

Support vector Regression methods for Functional Data have
een introduced recently by Hernández et al. [17]. It is known that
stimation methods for very general regression models have been
laborated on the basis of regularization in RKHS [18,19,21].

Let X be a linear space with norm ‖‖X, and RX be the set of
unctions from X into R. Suppose it is given some positive definite
pd) function (or kernel) � : X × X → R. It is known that there exists
RKHS H� ⊂ RX with reproducing kernel �. The norm on H� will
e denoted by ‖‖H� .

Consider the abstract nonparametric regression model:

= �(X) + e,

here (X, Y) is a random variable on some probability space
�,F, P) with values inX × Y,Y ⊂ R, e is a real-valued random vari-
ble with zero mean, which is assumed to be independent from
X, Y), and � is an unknown mapping X → R.

The problem of interest is to estimate the regression mapping �
n the basis of data (Xi, Yi), 1 ≤ i ≤ n, formed by independent and
dentically distributed observations of (X, Y).

For this, let H0 be a given finite-dimensional linear subspace
f RX with basis G1, . . . , Gm. Denote by H = H� + H0 the space of
unctions F = F� + F0 with F� ∈H� and F0 ∈H0. Henceforth, it will be
ssumed that � ∈H. Within this framework the regression problem
s formulated as a variational problem of finding the function F that

inimized the Regularized Empirical Risk, R�(F)

ˆ
� = argmin

F ∈H
R�(F).

he Regularized Empirical Risk is defined by:

�(F) = Remp(F) + �‖F�‖H� ,

here the data dependent term Remp(F) =
1/n)

∑n
i=1c(Xi, Yi, F(Xi)) is called Empirical Risk and the sec-

nd term, called stabilizer, is a norm ‖F�‖H� in H� and � is the
egularization parameter.

In the case of support vector regression methods the cost func-
ion c within the Empirical Risk is the so-called �-insensitive cost
unction

(X, Y, F(X)) = |Y − F(X)|� = max(|Y − F(X)| − �, 0),

here � ≥ 0 is some given constant.
It can be noticed that the general framework for regression esti-
ation through regularization in RKHSs, can be applied for any
pecification of the space X, the pd kernel � on X, the contrast func-
ion c, and the finite-dimensional subspace H0 of RX. Functional
onparametric regression models deal with cases in which X⊂ RT

s a set of functions x : T → R, where T is an infinite-dimensional set.

t
d
(

t

ica Acta 642 (2009) 110–116 111

hus, in regression models with FD, the unknown regression map-
ing � is a functional defined on a normed space X of real-valued
unctions.

It is known that under quite general conditions on the cost
unction c (which are satisfied by the �-insensitive contrast), the
egularized estimate �̂� in any abstract regression model has the
ollowing explicit form: for all x ∈X,

ˆ
�(x) =

n∑
i=1

ai�(xi, x) +
m∑

j=1

bjGj(x)

or some ai, bj ∈R that depend only on the hyperparameter � and
he matrices K = (�(xi, xj)), G = (Gj(xi)).

Therefore, once the kernel � is given, the numerical computa-
ion of RKHS-based regularized estimators �̂� in regression for FD
nput (i.e., when X is a space of functions) is exactly the same as
n regression for multivariate input (i.e., when X is a subspace of
ome finite-dimensional linear space Rd). Some results that allow
or the construction of some classes of nnd kernels on functional
paces were given in Ref. [17], where the Gaussian kernel appears
s a particular case of these class of kernel.

. Experimental

In order to assess the performance of the proposed method,
DA-SVR is applied to some datasets and the results are compared
ith other calibration methods widely used in chemometrics like

raditional PLS, SVR and LS-SVM.

.1. Datasets

The FDA-SVR method was applied to three different spectral
atasets. The first one, named Tecator dataset, is from the food

ndustry [22]. It consists of 215 near-infrared absorbance spectra
f meat samples, recorded on a Tecator Infratec Food and Feed
nalyzer. Each observation consists of a 100-chanel absorbance
pectrum in the 850–1050 nm wavelength range. Each spectrum in
he data base was associated with the percentage of fat, water and
rotein, determined according to reference methods as described

n Ref. [22]. The regression problem in this work consists of pre-
icting the fat content from a meat sample, based on its spectral
ata. From the 215 spectra, 43 were kept aside as a testing set and
he 172 remaining samples are used for model estimation (training
et). The raw data was preprocessed, each spectrum was reduced
o zero mean and unit variance.

The second dataset contains NIR spectra of ternary mixtures of
thanol, water, and 2-propanol, originally measured and described
y Wülfert et al. [23]. A mixture design of 19 different combi-
ations of mole fractions was analyzed in a wavelength range of
50–1049 nm with a resolution of 1 nm (200 wavelengths). The
pectral data for each mixture was measured at five different tem-
eratures 30, 40, 50, 60, and 70 ◦C. This dataset is representative of
well known analytical chemical problem in which NIR spectra of a

ernary mixture are nonlinearly affected by temperature-induced
pectral variations. As a result, the relations among spectra mea-
ured at different temperatures are not straightforward. The same
raining and test set proposed in Ref. [23] for the construction of
lobal models, were maintained. The test set contains the mixtures
, 6, 9, 11, 14 and 15 per temperature and the other 13 mixtures per

emperature make up the training set (65 objects). In the same way,
ata pretreatment was performed according to Wülfert’s paper
baseline correction and mean-center).

The third and last dataset originated from pharmaceutical
ablets [24,25]. This dataset consist of near infrared (NIR) transmit-
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Table 1
Optimal hyperparameter values

FDA-SVR SVR LS-SVM PLS
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suggesting that FDA-SVR model is statistically well posed.

Regarding sparsity, all sparse methods use similar percent of the
training data as support vectors. In order to achieve a sparse model
with LS-SVM, it is necessary to apply pruning techniques to the
12 N. Hernández et al. / Analytica

ance spectra of pharmaceutical tablets with 310 spectra and 404
ariables or wavelengths from 7400 cm−1to 10507 cm−1. Calibra-
ion models in this paper were carried out with a relative small data
et defined as “preliminary calibration set” in the original paper
24], consisting of 120 samples from the pilot scale. The goal of
his analysis set is to predict the active substance content (w/w)
f a pharmaceutical tablet. According to the authors [24], the PLS
odel was capable of achieving acceptable performance, indicat-

ng that the inherent data structure was approximately linear. This
ataset was selected to investigate if the proposed method can deal
ith linear problems. The complete dataset was split into 65 sam-
les for training and 55 samples for testing. Multiplicative scatter
orrection (MSC) was used as preprocessing method.

.2. Software and optimization

All calculations were carried using Matlab software [26]. SVR
alculations were performed using a toolbox for Matlab called spi-
er [27]. For LS-SVM, the Matlab/C toolbox [28] was used. PLS model
ere built using the PLS Toolbox 3.5 [29]. The calibration method
roposed was implemented using the SVM toolbox [30] and the
unctions implemented in Matlab by Ramsay [31] for Functional
ata Analysis.

For the application of FDA-SVR each function (spectra) was
epresented by a n th order B-spline approximation with p
asis functions. The optimal values for the number of B-spline
oefficients (p) and the order of the spline basis (n) were
elected following a leave-one-out (LOO) cross-validation proce-
ure described in Ref. [32]. The kernel functions used within the
ernel-based algorithms (SVR, LS-SVM, FDA-SVR) were the Gaus-
ian kernel or the linear kernel.

The optimal hyperparameters values for training FDA-SVR (�, �
nd specific kernel parameter), SVR (�, � and specific kernel param-
ter) and LS-SVM (� and specific kernel parameter) have been tuned
sing a grid search based on k-fold cross-validation. The number of

atent variables used in the PLS models was selected with k-fold
ross-validation.

In order to obtain the final prediction error, an independent test
et was used. The comparison of the accuracy among the different
odels was done using RMSEP, defined by:

MSEP =

√√√√ 1
N

N∑
n=1

(ŷn − yn) (1)

here yn and ŷn are the measured and estimated values of the
tudied property for a sample, respectively, and N is the number
f samples in the prediction set.

. Results and discussion

In this section results of applying FDA-SVR on the three datasets
escribed above are presented as well as the comparison with the
ther reference methods selected.

.1. Tecator meat sample dataset

PLS, SVR and LS-SVM models were built for this data set in
rder to compare their performance with the new methodology
roposed.
A Gaussian (RBF) kernel was used in all the kernel-based meth-
ds (SVR, LS-SVM, FDA-SVR).

For FDA-SVR, the leave-one-out (LOO) cross-validation proce-
ure, followed by selecting the parameters of the B-spline basis
o represent each spectra as a function, leads to the selection of a

F
m

bf (�) 0.1 0.97 2.13 ×
0.1 0.5 × ×

PC × × × 14

-spline basis of order 5 and 48 basis functions. Previous studies
n this standard dataset [4,32] have pointed out the relevance of
he spectral shape and, for that reason, the L2 norm of the second
erivative of each spectrum was used within the Gaussian kernel
sed in FDA-SVR.

Table 1 shows the hyperparameter values resulting from the grid
earch based on 4-fold cross-validation for FDA-SVR, SVR and LS-
VM. The number of latent variables for PLS was selected by 4-fold
ross-validation and appears in this table also.

With this hyperparameter setting all the algorithms were
rained and the obtained models were applied to the test set. A com-
arison of fat content prediction errors for the different methods is
hown in Fig. 1.

Fig. 1 shows that FDA-SVR, like the other nonlinear methods,
utperforms the traditional PLS (by a factor of 3.5). This behavior
s a consequence of the nonlinear relationship between the analyte
fat content) and the spectra, which is being better explained by the
onlinear methods rather than by linear PLS, despite the great num-
er of latent variables in the PLS model. FDA-SVR is more accurate
by a factor of 1.51) than the original SVR, which appears as an evi-
ence that the new method is taking advantage of the functional

nformation provided. It is visible that the results from FDA-SVR
nd LS-SVM are practically the same differing just by a factor of
.03. LS-SVM is a simpler method and requires the optimization of
ewer parameters than the other support vector-based methods, so
he models could be optimized more accurately and probably this

ight be the reason for its good performance.
The standardized residuals versus predicted values for the test

et using FDA-SVR model are graphically represented in Fig. 2.
The data points in the plot seem to be randomly distributed

round zero and also, there are no samples with high residuals,
ig. 1. Performances of different approaches together with the newly presented
odel based on FDA-SVR for Tecator dataset.
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Fig. 2. Standardized residuals versus predicted values of fat content for FDA-SVR
model.

Table 2
Number of support vectors for Tecator dataset
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great differences between the percent of training objects used for
the different approaches to construct the models. The only notable
FDA-SVR SVR LS-SVM

SV 150 147 148
87 85 86

agrange multipliers [20], which implies in an increase of both final
rror and computational cost. The number of support vectors and
he percent of the training set that they represent for each method
re shown in Table 2.

.2. Temperature influenced near-infrared spectra dataset

This dataset has been studied in previous works [33,34], so the
esults for PLS, SVR and LS-SVM models were gathered from the
iterature.

FDA-SVR global models were constructed for each compound
n the mixture (ethanol, water and iso-propanol). For this, each
pectra in this dataset was approximated by a B-spline basis of
rder 6 and 48 basis functions (the LOO cross-validation procedure
entioned in previous section was used to select these parame-

er values). The Gaussian (RBF) kernel function was utilized, but
or this data, the actual values of spectral variables appeared to
e as important as the shape of the spectra. For that reason, not
nly the information gathered from the second derivative of the
pectrum was used but also the values of the spectrum itself.
hen, the norm used within the Gaussian kernel was a linear
ombination of the L2 norm of the second derivatives of the spec-
rum and the L2 norm of the spectrum itself, that is ‖x‖ = ‖x‖L2 +
x′′‖L2 .
The corresponding hyperparameter values, resulting from the
rid search based on 10-fold cross-validation, for ethanol, water
nd iso-propanol models, are shown in Table 3.

A comparison of the mole fraction prediction errors of different
ethods for ternary mixtures of ethanol, water and 2-propanol is

able 3
ptimal hyperparameter values of FDA-SVR model for each compound

Ethanol Water 2-Propanol

500 500 500
bf (�) 0.5 0.5 0.5

0.003 0.003 0.003

d
a

T
R

P
S
L
F

ig. 3. Performance of different approaches together with the newly presented
odel based on FDA-SVR, for temperature influenced near-infrared dataset.

hown in Fig. 3. In order to achieve greater clarity, the numerical
esults for RMSEP are presented in Table 4.

It can be seen in Fig. 3 a similar behavior to that of the pre-
ious dataset analyzed. Again, the nonlinear approaches perform
etter than PLS for all the compounds. This result is not surprising

f we remember that in this dataset temperature appears as a non-
inear interference and global models are built, for which spectra

easured at different temperatures are being used. So, nonlinear
ethods can explained better than PLS this nonlinearity in the

ataset. FDA-SVR is more accurate than the other support vector-
ased methods for the case of ethanol and iso-propanol, achieving
qual performance to LS-SVM in the case of water.

A graphical representation of standardized residuals versus fit-
ed values for each compound is shown in Fig. 4.

Most of the residuals are randomly scattered around zero in
ig. 4. However, there are some important aspects that are worth
o comment. It can be noticed that the variance of residuals for low
oncentration of ethanol is slightly lower than for other concen-
ration values. While the opposite occurs for high concentration of
ater. Also, the residuals for high concentration of water and iso-
ropanol are biased, i.e., the residuals are not randomly distributed.
hese facts indicate that the regression function has uncertainty at
he boundaries.

Levels of sparsity achieved by support vector-based methods for
thanol, water and iso-propanol are shown in Table 5. There are not
ifference appears in the case of water, where LS-SVM requires
lmost twice the amount of SVs used by FDA-SVR.

able 4
MSEP for all the methods

RMSEP

Ethanol Water 2-Propanol

LS 0.0132 0.0069 0.0133
VR 0.0061 0.0030 0.0059
S-SVM 0.0053 0.0023 0.0047
DA-SVR 0.0049 0.0023 0.0045
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Fig. 4. Standardized residuals versus predicted values of (a) eth

Table 5
Number of support vectors used in all analysis for all compounds

Ethanol Water 2-Propanol

#sv % #dsv % # sv %

S
L
F

d
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t
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t
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VR 39 60 27 41.5 36 55
S-SVR 37 57 57 88 35 54
DA-SVR 36 55 30 46 35 54

Because the exact composition of each sample is known in this
ataset, the interpretation of the models from the chemical point
f view turns to be easier. To exhibit the influence of each training
bject to the final FDA-SVR solution, the estimated Lagrange mul-
ipliers of the models were used. The greater the absolute value of
he Lagrange multiplier associated with each sample in the train-
ng set, greater its influence in the model. Fig. 5 shows the most
mportant training objects for each model (support vectors), as well
s those which do not contribute to the solution (˛i = 0). In order
o known the relation between the importance of objects and its
hemical structure, we follow the procedure explained by Thissen

t al. [34], to show its importance in the mixture design proposed
y Wülfert et al. [23]. Here, we will study the contribution of the
raining objects in each model separately. The importance of each

ixture point in a design of an specific model, was obtained by
aking the mean of the individual five mixture design correspond-

2
d
t
t
a

Fig. 5. Lagrange multipliers versus sample number showing the influence of
anol (b) water and (c) iso-propanol for FDA-SVR model.

ng to the five different temperatures at which each mixture was
easured, and represented with a gray scale color (the greater the

nfluence, darker the color).
Notice that Lagrange multipliers for the three models are in the

ame range of values (Fig. 5), due to the regularization parameter
which has the same value in all the models. Despite of we are

nalyzing the influence of each object for each model separately,
omparison between models can be done.

At first sight it can be seen from Fig. 6 that objects with a high
ole fraction of ethanol and iso-propanol are the most important

n all the models. However, their influence varies from design to
esign. For example, they seem to have a stronger influence in
thanol and iso-propanol than in water model. In fact, the design
orresponding to water reaffirms the fact that it has the greatest
parsity level as was presented in Table 5. Especially the zone of high
ater concentration, in which the amount of objects practically not
sed, is greater than in the other designs.

Similar behavior was obtained by Thissen et. al [34] inter-
reting traditional SVM. According to chemical structures (two
omologous alcohols versus water), the NIR spectra of ethanol and

-propanol are similar whereas the one from water is significantly
ifferent. Consequently, it is more difficult for this methods to dis-
inguish ethanol from 2-propanol than ethanol from water, being
he mixtures with high concentration of water the best predicted
nd thus non support vectors objects.

training samples in (a) ethanol (b) water and (c) iso-propanol models.
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Fig. 6. Importance of training objects for (a) ethanol, (b) water and (c) 2-propanol FDA-SVR models.

Table 6
Optimal hyperparameter values

FDA-SVR SVR LS-SVM PLS

� 100 10 46.26 ×
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Fig. 8. Standardized residuals versus predicted values of active compound content
for FDA-SVR model.

Table 7
Number of support vectors for Tablet dataset
bf (�) × 0.61 0.93 ×
0.08 0.2 × ×

PC × × × 3

.3. Tablet dataset

PLS, SVR, LS-SVM and FDA-SVR models were constructed for this
ataset. For SVR and LS-SVM, the Gaussian (RBF) kernel was used.

For FDA-SVR, each spectrum is approximated by a B-spline basis
f order 4 and 128 basis functions. The kernel function used within
his algorithm is a linear kernel, which means that essentially the
nner product between functions is taken into account.

The hyperparameter values shown in Table 6 were selected by
erforming a grid search based on 10-fold cross-validation for sup-
ort vector-based methods and 10-fold cross-validation for PLS
odel.
The prediction errors for the active compounds content obtained

rom different approaches are shown in Fig. 7. It can be noticed that
or this dataset, the prediction errors of all nonlinear approaches

re very similar (SVR, LS-SVM and FDA-SVR). FDA-SVR is slightly
ess accurate than SVR and LS-SVM. This may be a consequence
f the few information, from the functional point of view, that
ould be extracted from the data and supplied to the method. For

ig. 7. Performances of different approaches together with the newly presented
odel based on FDA-SVR for Tablet dataset.

#
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r
c

FDA-SVR SVR LS-SVM

SV 48 34 34
73 52 52

xample, information could has been lost by using only the coeffi-
ients resulting from the projection of the function in the B-spline
asis.

Differences between prediction errors from these nonlin-
ar methods and traditional PLS are not so significant as in
he other datasets. PLS performs reasonably well, corroborat-
ng the strong linear relationship between the spectra and the
esired property. So FDA-SVR, as well as the other nonlinear
ethods, have demonstrated good performance in solving linear

roblems.
The standardized residuals versus predicted values by FDA-SVR

odel of the active compound content are graphically represented
n Fig. 8.

The residuals are randomly scattered around zero, within the
5% confidence interval given by the dashed lines, except by two
amples with high residuals (probably two outliers).

The same number of support vector was selected by SVR and LS-
VM (after applying prunning techniques). FDA-SVR requires more
raining objects to build the model (see Table 7).

. Conclusions
This paper proposes a new method based on support vector
egression and functional data analysis (FDA-SVR) for multivariate
alibration. Its practical feasibility for the solution of both linear
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nd nonlinear multivariate calibration problems has been shown.
he new method was compared with other calibration approaches:
LS, SVR and LS-SVM, showing good performance, what can be
xplained by the possibility of capturing more information from
he shape of the spectrum, due to the functional preprocessing
echniques. Although FDA-SVR outperformed the other support
ector-based methods in some of the examples studied in this work,
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mong others. This implies that no method should be rejected,
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he solution of a given problem. For example, this drawback of FDA-
VR, just mentioned, can be compensated when working with high
imensional spectra, due to the advantage of this method for deal-

ng with high dimensional data. The satisfactory results obtained
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