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a b s t r a c t

A multivariate QSAR study of thirty-three 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase
(HIV-1 IN) inhibitors was performed employing Ordered Predictors Selection (OPS) algorithm and PLS
regression for variable selection and model construction, respectively. Four descriptors were chosen and
a reasonable model (n¼ 30; R2¼ 0.68; SEC¼ 0.57; PRESScal¼ 8.72; F(2,27)¼ 28.97; Q2

LOO¼ 0.58;
SEV¼ 0.62; PRESSval¼ 11.62; R2

pred¼ 0.87; SEP¼ 0.29; AREpred¼ 4.37%; k¼ 0.99; k0 ¼ 1.01; jr2
0� r2

0
0 j ¼

�0.18) was built with two latent variables (59.54% of the information). Leave-N-out (LNO) and
Y-randomization methods confirmed the model robustness. The descriptors indicated that the HIV-1 IN
inhibition depends on the electronic distribution of the investigated compounds. The interpretation of
the model is related to the most accepted mechanism of action.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Human immunodeficiency virus (HIV), a retrovirus, is the
primary cause of AIDS (acquired immunodeficiency syndrome), and
one of the main medical and social problems nowadays. In 2007,
approximately 33 million people in the world are infected by HIV,
and the number of deaths so far totaled about two million. Seventy-
two percent of AIDS deaths occurred in the Sub-Saharan Africa [1].
In the last two decades, approximately twenty anti-HIV drugs have
been developed, but most of them act against the viral enzymes
HIV-reverse transcriptase and HIV-protease [2].

In spite of the development of the highly active anti-retroviral
therapy (HAART) [3], there is an emergent need to search for new
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anti-HIV agents. The main reasons are the serious adverse side
effects of the available drugs and the emergence of drug-resistance
(including cross-resistance) [4]. Attention has been given to the
development of drugs that act on new targets, such as the host
protein cell [5–8] and other viral structures, such as the enzyme
HIV-1 integrase (HIV-1 IN) [9,10].

The HIV-1 IN is, actually, a major breakthrough in AIDS research.
However, despite studies in this field, only recently the first
inhibitor of HIV-1 IN, raltegravir (Isentress�; Merck Co.), has been
approved by the FDA [11]. This drug, an N-Me pyrimidone, is
a derivative of the 4,5-dihydroxypyrimidine carboxamides (Fig. 1).
Studies have indicated that it is well tolerated, and has not shown
serious drug-related adverse events [12–14].

HIV-1 IN displays a conserved catalytic triad of metal-coordi-
nating carboxylates, which catalyzes two reactions: the 30-pro-
cessing (30P) that occurs in the cellular cytoplasm and processes the
retrotranscribed viral cDNA, and the strand transfer reaction (ST),
which catalyzes the initial joining of the processed 30-ends to the 50-
ends of the host-cell DNA [15,16]. The raltegravir and the 4,5-dihy-
droxypyrimidine carboxamide derivatives inhibit the ST reaction
and are classified as integrase strand transfer inhibitors (INSTIs) [15].

Quantitative structure–activity relationship (QSAR) describes
how a given biological activity can vary as a function of molecular
descriptors derived from the chemical structure of a set of mole-
cules. Thus, a model containing those calculated descriptors can be
used to predict responses of new compounds [17,18]. Only a few
studies involving computer aided-drug design (CADD) of HIV-1 IN
inhibitors were performed employing the 2D-QSAR approach
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Fig. 1. Basic structures of 4,5-dihydroxypyrimidine carboxamides, N-Me pyrimidone
and the structure of raltegravir. Adapted from references [11,12].
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(see Ref. [19] as a review). Therefore, in this paper, a multivariate
QSAR study of thirty-three 4,5-dihydroxypyrimidine carboxamide
derivatives acting as HIV-1 IN inhibitors was carried out. The
findings can be helpful for designing new active derivatives and
better understanding the inhibition of the ST reaction.

2. Chemistry

The training set containing thirty-three 4,5-dihydroxypyr-
imidine carboxamide derivatives (Fig. 2) was selected from Ref.
[20]. These compounds present the b-diketo acid (DKA) substruc-
ture, which is the pharmacophore of the INSTIs.

3. Pharmacology

The biological activity of the investigated compounds was
measured according to the concentration required for 50% inhibi-
tion of the ST reaction, IC50 (nM), using the methodology described
by Hazuda and co-workers [21]. The experimental IC50 values were
converted into their corresponding pIC50 (�log IC50) measurements
and are listed in Fig. 2.

4. Results

The selected model (n¼ 33; Spress¼ 0.52) obtained by OPS–PLS
methodology presented six descriptors. Three outliers were
detected (8, 21 and 34) through the leverage versus studentized
residuals plot (Pirouette version 4) [22]. For an easier physico-
chemical interpretation, two more descriptors were eliminated.
The PLS model (Equation (1)) obtained with two latent variables
cumulated 59.54% from the original information. The selected
descriptors were the energy of the highest occupied molecular
orbital (EHOMO), the component vector to the overall polarizability
in the Y plane (ayy), the total energy (ET), and the sum of the bond
electrotopological values of carbon–carbon aromatic bonds in
which the carbons are not substituted (or bond-type E-state index
SeaC2C2aa) (Table 1). These properties were capable of elucidating
68.10% and predicting 57.67% of total variance. The F-test result was
much higher than the tabled critical-F (cF) with 95% confidence
interval and the PRESScal and PRESSval were smaller than SSY.
pIC50 ¼ þ127:17ðEHOMOÞ þ 0:06 ayy � 0:001ðET Þ

� �

þ 0:10ðSeaC2C2aaÞ þ 28:67 (1)

n¼ 30; outliers: 3; LVs¼ 2; Cumulated information¼ 59.54% (LV1:
38.41%; LV2: 21.13%); R2¼ 0.68; SEC¼ 0.57; PRESScal¼ 8.72;
F(2,27)¼ 28.97 (cF¼ 3.35); Q2

LOO¼ 0.58; SEV¼ 0.62; PRESS-
val¼ 11.62 (SSY¼ 27.46).

LNO and Y-randomization results are shown in Fig. 3. The model
presented high average Q2

LNO, small fluctuations of the standard
deviations for each LNO point and small variations related to the
Q2

LNO value. Furthermore, the highest average value was found for
L7O (0.61), and the lowest average value was found for L6O (0.53).
Y-randomization results are in agreement with the suggested limits
[23]. This indicates that the explained variance by the model is not
due to chance correlation. Thus, considering all these tests, the
model selected as the optimum is robust.

To verify the external predictability, five compounds (10, 12, 22,
26 and 36) having low leverage values and presenting biological
activities covering the entire range of the training set were selected.

The model without the test set presented similar statistical
parameters to those found for model (1) (R2¼ 0.66, SEC¼ 0.61,
PRESScal¼ 8.30, F¼ 21.71, Q2

LOO¼ 0.53; SEV¼ 0.68, and PRESS-
val¼ 11.70), therefore, they can be considered equivalent. Many
authors argue that only externally validated models, after the
internal validation, may be considered realistic and applicable for
drug design or regulatory purposes [24,25]. Studies such as those
reported by Golbraikh and Tropsha [26], and Aptula and co-
workers [27], support this assumption. The results (Table 2) has
shown that the selected model presented high external predict-
ability, considering the proposed limits [26]. SEP and AREpred values
were also considerably low, which might indicate low prediction
errors (low deviations compared to a real value) for a synthesized
derivative based on this model, for example.
5. Model discussion

Three out of the four selected descriptors influence positively
the pIC50 values. Considering the standardized coefficients
(þ0.40EHOMO,þ0.31ayy,�0.25ET andþ0.36SeaC2C2aa) given by PLS
model (1), all descriptors are significant to the model. The model
presented statistical quality, good prediction power and robustness.
But in QSAR studies it is desirable to obtain a model where the
physicochemical properties, represented by the molecular
descriptors, can be interpreted and a parallel with the mechanism
of action under study (when available) can be traced [28].

There are several works in literature speculating the action
mechanism of INSTIs. In this sense, the three atoms with lone
electron pairs (oxygen and/or nitrogen) in the pharmacophoric
structure of these compounds (DKA substructure) present
a required distance for binding two metallic ions at the same time
(probably Mgþ2 or Mnþ2) coordinated by the catalytic amino acid
residues (D64, D116 and E152) [29]. The crystallographic core
containing the in vitro inhibitor 5CITEP (PDB 1QS4) [30] shows this
site with just one metallic ion. Pharmacological studies confirmed
the metal-dependent enzymatic activity. However, additional
bonds probably are also necessary, mainly that one formed by an
aromatic side chain and a hydrophobic environment in the active
site located in the disorganized loop formed by the amino acid
residues 140–145 (Fig. 4) [31–35].

The optimum model presented high influence of properties
related to electronic distribution. The EHOMO values are normally
related to the molecular reactivity, ionization potential and the
capacity of a molecule to perform a nucleophilic attack, and



Fig. 2. Training set of thirty-three 4,5-dihydroxypyrimidine carboxamides. The identification code (in bold) used in the original reference [20] was kept. Only the partial charges of
indicated atoms (1–8) were utilized as descriptors, because they correspond to DKA pharmacophoric structure.
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establish charge-transfer complexes [36]. The molecular polariz-
ability is described as the ease of a molecule to have its electronic
cloud distorted by an external electric field [37]. In molecular
modeling the total energy, a thermodynamic descriptor, is calcu-
lated through the electronic distribution of a molecule [36]. Finally,
in the E-state formalism, each atom or bond is seen as having an
intrinsic state which is perturbed by every other atom or bond in
the molecule. This state encodes information regarding electronic
distribution (variation caused by all atoms of a structure) and
topologic aspects (greater/minor accessibility of atoms and bonds
to the external environment), and as those information can influ-
ence the intermolecular interactions [38].

Fig. 5 shows that the HOMO is located in the basic structure
included the DKA substructure. Considering the most probable
mechanism of action, the presence of EHOMO in the selected model
was expected, because the inhibitors possibly act as Lewis base,
donating the electrons supplied from the HOMO to the formation of
bonds with the metal ions. How readily this occurs is reflected in
the EHOMO. Molecules with high EHOMO values present a higher
tendency to donate their electrons and hence are relatively reactive
compared to the molecules with low-lying EHOMO. In this case,
compounds 19 and 20, the less active molecules, presented the
lowest EHOMO values, while 25, one of the most potent inhibitors,
presented high EHOMO value. The positive coefficient supports this
relationship. Since the electron metal affinity (Mgþ2 or Mnþ2) is
constant, only the EHOMO values of the 4,5-dihydroxypyrimidine
carboxamide derivatives should be examined as a factor that
influences on the reactivity between the training set and the ions.
Other QSAR studies where this descriptor appears support this
hypothesis [39–41]. Despite the small range of values found for this



Table 1
Descriptors used for the formulation of model, observed activities and LOO predicted values (three outliers were excluded).

Compound EHOMO
a ayy

b ET
c SeaC2C2aad pIC50 obs pIC50 pred Residues

4 �0.214 39.000 �1405.705 11.938 7.070 6.760626 0.309374
9 �0.215 47.319 �1445.023 12.137 7.700 7.179344 0.520656
10 �0.217 37.740 �1366.392 11.619 6.000 6.279759 �0.279759
11 �0.213 50.826 �1520.039 14.159 7.520 8.125476 �0.605476
12 �0.214 42.003 �1598.670 12.465 7.400 7.253083 0.146917
13 �0.214 44.465 �1598.666 12.465 6.210 7.484566 �1.274566
14 �0.211 30.463 �1559.327 14.306 6.670 7.363976 �0.693976
15 �0.214 39.024 �1483.133 10.451 7.700 6.680517 1.019483
16 �0.214 39.031 �1483.133 10.451 6.210 6.761083 �0.551083
17 �0.218 38.296 �1421.739 7.604 4.780 5.935599 �1.155599
18 �0.222 33.891 �1415.701 3.940 4.300 4.83099 �0.53099
19 �0.222 34.629 �1399.664 5.626 4.770 4.89445 �0.12445
20 �0.215 36.725 �1726.455 8.111 7.000 6.461845 0.538155
22 �0.217 38.019 �1742.498 3.972 5.600 6.043526 �0.443526
23 �0.215 49.411 �1880.110 10.300 8.000 7.659255 0.340745
24 �0.217 51.029 �1880.110 10.301 7.300 7.624567 �0.324566
25 �0.206 45.101 �1537.278 10.149 7.700 8.388641 �0.688642
26 �0.212 44.565 �1520.232 9.817 7.040 7.332997 �0.292997
27 �0.213 44.845 �1520.230 7.868 7.300 6.979424 0.320577
28 �0.213 40.498 �1520.230 7.866 6.260 6.771919 �0.511919
29 �0.214 42.056 �1445.023 10.123 6.960 6.83435 0.12565
30 �0.214 42.880 �1445.026 8.095 7.400 6.636039 0.763961
31 �0.214 41.426 �1445.026 8.143 7.150 6.567787 0.582213
32 �0.214 47.645 �1636.765 7.896 6.890 7.239001 �0.349001
33 �0.214 43.005 �1636.768 9.366 7.300 7.046585 0.253415
35 �0.217 41.587 �1865.299 7.441 7.700 6.539001 1.160998
36 �0.212 37.662 �1504.938 5.911 6.790 6.416278 0.373722
37 �0.216 39.381 �1504.936 18.471 7.150 7.410614 �0.260614
38 �0.216 38.968 �1504.936 16.427 8.000 6.888638 1.111362
39 �0.219 44.985 �2324.888 16.505 8.000 8.402181 �0.402181

a In eV; calculated at B3LYP/6-31G** level in the Gaussian 03 software.
b Calculated with the Charge Plugin of the Marvin 4.1.8 software.
c In Hartree; calculated at B3LYP/6-31G** level in the Gaussian 03 software.
d Calculated with E-state implemented by PClient Interface (http://www.vcclab.org).

Fig. 3. Plots of Y-randomization (A) test and LNO validation (B) plots.

E.B. de Melo, M.M.C. Ferreira / European Journal of Medicinal Chemistry 44 (2009) 3577–35833580
descriptor (�0.21 to �0.22 eV), it is enough to describe this char-
acteristic over the training set. Such tendency can be observed by
the linear correlation coefficient to the pIC50 without the outliers
(r¼ 0.50).

The ayy, calculated by a method based on the empiric model
proposed by Miller and Savchik [42,43], describes the ability of
a molecule to be polarized in the Y direction. Despite some
displacement of the center of mass, the component Y in the
compounds of training set crosses through the DKA substruc-
ture, which is the binding site for the ions (Fig. 6). Thus, this
descriptor can also be related to a possible nucleophilic attack to
the metallic ions and the resultant change in the charge distri-
bution. The signal of the coefficient is positive, indicating that
the improvement of the polarization in this plane is favorable to
the activity. In fact, the tendency of the compounds in a range of
pIC50 4.30–7.07 (half of training set without outliers) presented
low values for ayy.
Table 2
Predicted values of the test set for HIV-IN inhibition and the statistics parameters.

Compound pIC50 obs pIC50 pred Residues

10p 6.000 6.263667 �0.263667
12p 7.400 7.267147 0.132853
22p 5.600 6.006945 �0.406945
26p 7.040 7.308198 �0.268198
36p 6.790 6.480028 0.309972

R2
pred 0.8736

SEP 0.2901
AREpred 4.3663%
k 0.9862
k0 1.0122
jr2

0� r2
0
0 j �0.1754

http://www.vcclab.org


Fig. 4. Crystallographic structures of the core of HIV-1 IN. Catalytic triad in red tubes. Inhibitor 5CITEP in color-by-atoms tubes. Mgþ2 in green. Flexible loop and Y143 in blue.
Square: b-diketo acid, DKA, pharmacophoric group, where Ar are aromatic chains. Figure built in ViewerLite 4.2 software (Accelrys Inc, http://www.accelrys.com). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Highest Occupied Molecular Orbitals (HOMO) of compounds 19, 28 and 38. Figure built in GaussView 3.0 software (Gaussian Inc, http://www.gaussian.com).

Fig. 6. Cartesian axes’ representation for compounds 19, 28 and 38. Despite the little displacement of center of mass, Y axis always crosses DKA substructure. Figure built in
GaussView 3.0 software (Gaussian Inc, http://www.gaussian.com).
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In QSAR studies, the descriptor ET (and other thermodynamic
descriptors obtained by molecular modeling) has been suggested to
be related to molecular stability [44–46]. In the molecular struc-
tures of the training set, the region which presents more confor-
mational freedom corresponds to the aromatic side chain, and it
was reported that this substructure binds to the HIV-1 IN estab-
lishing a p-stacking interaction with the Y143 residue, located in
the flexible loop [32,33,47]. Thus, the negative signal of the stan-
dardized coefficient may denote that the binding of the less stable
inhibitors (small absolute value for ET) is not favored. Thus, an
increase of this property can improve the binding with the specific
active site, promoting the increase of activity.
The descriptor SeaC2C2aa is probably related to the binding
between the aromatic side chain and the residue Y143, regarding
a p-stacking interaction, because its values varied only as a function
of the aromatic side chain. The positive coefficient indicates that
the increase of this parameter contributes favorably to the activity.
Some of the less active compounds – 8 (outlier), 18, 19 and 22 –
have lower values of this parameter, and some of the most active –
11, 37, 38 and 39 – have higher values. This descriptor considers the
environment of each bond, and the electronegativity of the
substituents is also important for the result. For instance, the
SeaC2C2aa values found for compounds 4 and 37 were 11.94 and
18.47, respectively, but the only difference between these two
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Table 3
Statistical parameters analyzed and correspondent equations.

Parameter Definition Equation

R2 Squared correlation coefficient of calibration model 1� ½
P

iðyobsi � yciÞ2=
P

iðyobsi � yobsiÞ2�

SEC Standard deviation of calibration model [
P

i(yobsi� yci)
2/n� p� 1]½

PRESScal Predictive Residual Sum of Squares of Calibration
P

i(yobsi� yci)
2

F F-test (with 95% confidence interval) ½
P

iðyobsi � yciÞ2=k�=½
P

iðyobsi � yobsÞ2=n� p� 1�

Q2
LNO Squared correlation coefficient of cross validation (‘‘leave-N-out’’, LNO). 1� ½

P
iðyobsi � yviÞ2=

P
iðyobsi � yobsiÞ2�

SEV Standard error of cross validation [
P

i(yobsi� yvi)
2]/n]½

PRESSval Predictive Residual Sum of Squares of Calibration of Validation
P

i(yobsi� yvi)
2

R2
pred Squared correlation coefficient of prediction 1� ½

P
iðyobsi � yeviÞ2=

P
iðyobsi � yobsiÞ2�

AREpred Average relative error of prediction [
P

i(jyobsi� yevij)/yobsi ]� 100/n

SEP Standard error of prediction [
P

i(yobsi� yevi)
2/n]½

k and k0 Slopes of the linear prediction regression lines
P

i(yobsi� yevi)/
P

iyevi and
P

i(yobsi� yevi)/
P

iyobsi

y: biological activity; y: average observed biological activity; obs: experimental values; c: estimated activity in the regression model; v: estimated activity in the cross-
validation; ev: estimated activity in the external validation; n: number of samples of training set; p: number of latent variables; yobs: average observed activity for the complete
training set; test: test set.
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compounds is a fluorine atom in the ring. Thus, as already
mentioned, the bond-type E-state index encodes the electron
accessibility of a specific bond type [48]. This information can
indicate the relationship between the SeaC2C2aa descriptor and
the importance of the p-stacking aromatic interaction in the active
site of HIV-1 IN [32,43,47].

The SeaC2C2aa descriptor also should be the reason for
compounds 8 and 34 being outliers. The first compound does not
have aromatic bonds in the side chain. The second has the same
SeaC2C2aa value found for compounds 32 and 33, its isomer, but it
is much less active. Compound 21 could be an outlier because its
descriptor values were quite similar to its isomer (compound 22),
but it is more potent than 22.

6. Conclusion

In this study it was possible to obtain a multivariate QSAR model
for a set of thirty-three 4,5-dihydroxypyrimidine carboxamides
that have the capability of inhibiting the in vitro ST reaction cata-
lyzed by HIV-1 IN. The LOO and LNO cross-validation methods, the
Y-randomization technique, and the external validation indicated
that the model is significant, robust and has good internal and
external predictability. The quality of the selected model is
strengthened by the physicochemical interpretation, which found
very satisfactory support in the literature for all descriptors of the
best model. The inhibitory activity of the investigated compounds
was described based on the EHOMO, ET, ayy and SeaC2C2aa values, all
related to the electronic distribution. It was possible a relationship
between all descriptors and the most accepted hypothesis
regarding the mechanism of action, especially for the EHOMO and
SeaC2C2aa descriptors, which were the most important parameters
considering the standardized coefficients. It is interesting to notice
that the OPS algorithm was able to select a combination of
descriptors related to the mechanism of action. This could have
happened because OPS considers the biological activity informa-
tion through the informative vectors for variable selection. The
resulting findings can be helpful in the development and optimi-
zation of new HIV-1 IN inhibitors.

7. Methodology

Three-dimensional structures were assembled based on similar
crystallographic fragment (code DOTRUZ) retrieved from the
Cambridge Structural Database [49]. The molecular modifications
and geometry optimization by molecular mechanics (MMþ force
field) were carried out using HyperChem 7 [50]. Geometry opti-
mizations were performed in the following sequence: AM1 /

HF/6-31G* / B3LYP/6-31G** at Gaussian 03 [51]. The DFT/B3LYP
functional was chosen because it is reported that this method leads
to satisfactory results when molecular geometries and energies are
considered [18,52]. The minimun energy structures were used to
obtain the electronic descriptors (Gaussian 03). Other descriptors
(steric, topological, solubility, constitutional) were calculated
employing other chemical representations and using different
software (see Supplementary material), giving a total of 162
molecular descriptors.

To obtain the best model, a three-step procedure was employed.
The number of descriptors was reduced to sixty-three, eliminating
those in which the absolute value of the linear correlation coeffi-
cient (jrj) to the pIC50 was lesser than 0.3. It was considered that
below this threshold, no useful statistical information would be
provided to the model. The remaining descriptors were further
analyzed employing the Ordered Predictors Selection (OPS) algo-
rithm [53]. In this algorithm, the descriptors are selected in three
steps: (i) obtaining an informative vector; (ii) ordering the variables
into decreasing order by this vector; and (iii) investigating the
ordered variables. Three informative vectors were used in this
work: regression vector, the correlation vector and the product
between the elements of both vectors. Then, the OPS method builds
models using Partial Least Squares [54]. Following a suggestion
from Wold and co-workers [55], the obtained models were sort by
the Spress, (PRESSval)

1/2/n� p� 1, value. This parameter can penalize
the model with larger number of latent variables, which seems to
be preferable to encourage model parsimony.

The best reduced combination of descriptors was refined using
the software Pirouette 4 [22], by removing outliers and some more
descriptors, seeking to obtain a statistically significant, robust and
interpretative model.

Several statistical parameters, listed in Table 3, were used to
evaluate the quality of the model. For the internal quality, the
recommended limits are R2� 0.6 and Q2

LOO� 0.5 [26,56], the SEC
and SEV should be as low as possible and the PRESScal and PRESSval

values should be lower than the sum of squares of the response
values (SSY) [57]. The F-test value should be higher than the tabled
critical-F (cF) and, the higher the difference between them is, the
more statistically significant the model will be [58].
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The robustness of the model was examined by the leave-N-out
cross-validation (LNO, N¼ 1 at 8) and Y-randomization test [56].
The LNO employs smaller training sets than the LOO procedure, and
QSAR models with a high average Q2

LNO and small oscillations can
be considered robust [24]. The LNO was performed in three steps,
where in each a pre-randomization of all rows of data matrices (X
and Y) was performed before the LNO process, in order to decrease
the impact that the withdrawal of sets of samples in some combi-
nations could have in the result of Q2

LNO. Results with an average
for each point close to Q2

LOO with standard deviations are expected
near zero [26]. For the Y-randomization test, performed ten times
[57], R2� 0.3 and Q2

LOO� 0.05 for all results were considered
acceptable. These limits were selected based on Eriksson and co-
workers’ suggestions [23]. The Y-randomization test is capable of
verifying if models with high values of R2 and Q2

LOO present chance
correlation [25]. Both tests were performed in Matlab 7 [59] and the
plots built in the DataFit 9 [60].

After internal evaluations, a set for external validation (test
set), having a representative pIC50 range as well as structural
variations, was selected from the training set and a new model
was built. The statistical quality of the new model cannot be much
different from the model generated with all compounds. A QSAR
model can be considered predictive when presenting R2

pred� 0.6
[26]. But this is not enough. It is also suggested to check the
following measures: (i) the slopes k or k0 of the linear regression
lines (equations in Table 3) between the observed activity (yobsi)
and the predicted activity from the external validation set (yevi),
where at least one slope should be in the range 0.85� x� 1.15
(x¼ k or k0); and (ii) the absolute value of the difference between
the determination coefficient between yobsi and yevi, r2

0, and the
determination coefficient between yevi and yobsi, r020, that result
should be lesser than 0.3 [24–26]. The SEP and AREpred values
must be as low as possible.
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