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Universitária, 2069, 85819-110, Cascavel, Paraná, Brazil.
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Abstract
Despite of the availability and facility of accessing several algorithms for calculation of
LogP in QSA(P)R studies, articles typically do not describe the selection procedure for
the method used. Therefore, three studies to verify the influence of different LogP
algorithms on building QSAR models were performed. Two QSAR data sets from the
literature (forty-two tricyclic phtalimide inhibitors of HIV-integrase and fourty-six TIBO
derivatives inhibitors of HIV-reverse transcriptase) were used together with LogP
calculated by thirteen algorithms, and several regression models were constructed and
compared. A new QSAR study for 4,5-dihydroxypyrimidine carboxamides inhibitors of
HIV-1 integrase was also performed. The explained and predicted variance, results from
external validation, leave-N-out cross-validation and y-randomization test were analyzed
for all models from the three data sets. Despite the same physicochemical meaning,
LogP�s calculated by distinct methods may show different levels of contribution to the
model. This observation comes out from the comparison of validated models. These
results indicate that the arbitrary choice of one specific algorithm for LogP calculation, as
is usual in QSA(P)R studies , does not necessarily lead to the highest quality model for
the analyzed data set.

1 Introduction

Parameters that encode physicochemical and molecular
properties, generally designated as molecular descriptors,
are used in quantitative structure-activity (or property) re-
lationships studies, QSA(P)R. The descriptors are em-
ployed for building quantitative (mathematical) models to

analyze correlation between the chemical structure and
specific biological activity or property. Of particular value
are the descriptors that encode information about the
drugs transport and drug-receptor binding [1].

1-Octanol/water partition coefficient (P) is certainly one
of the most important among thousands currently avail-
able descriptors, being defined as the concentration ratio
of a substance in the organic and aqueous phases of a two-
compartment system under equilibrium conditions [1].
Many biological processes, such as biomembrane-mediat-
ed passage of a drug from blood (an aqueous media) to tis-
sues depend on the partition coefficient [2]. Due to theo-
retical reasons and the fact that values of P can vary by 12
orders of magnitude (from 10�4 to more than 108), com-
monly the logarithm (LogP) is used to characterize this
property [3 – 5].
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Abbreviations: AREpred average relative error of prediction; ES
external validation set; HIV human immunodeficiency virus;
LNO leave-N-out crossvalidation; PHYSPROP Physical Proper-
ties Database; PLS Partial Least Squares; PRESScal predictive
residual sum of squares of calibration; PRESSval predictive resid-
ual sum of squares of calibration of validation; Q2

LNO correlation
coefficient of leave-N-out cross-validation; Q2

LOO correlation co-
efficient of leave-one-out crossvalidation; QSAR quantitative
structure-activity relationship; R2 correlation coefficient of cali-
bration; R2

pred correlation coefficient of prediction; SEC stan-
dard error of calibration; SEP standard error of prediction; SEV
standard error of cross-validation; SSy sum of squares of the re-
sponse values; TIBO tetrahydroimidazo[4,5,1-jk][1, 4]benzodia-
zepinone; TS training set.

Full Papers



Besides of being involved in the pharmacokinetic phe-
nomena, LogP can also be related to the drug/receptor in-
teractions [6]. The determination of LogP can be helpful
to a better understanding of how this property is associat-
ed with the hydrophobic interactions and the phenomenon
of entropy-enthalpy compensation, which is related to sol-
vation/desolvation processes [7].

LogP is widely used in obtaining models for the predic-
tion of molecular behavior in pharmaceutical, environ-
mental, biochemical and toxicological sciences since it is a
good measure of molecular lipophilicity [3,8,9]. The main
methodology to determine P is based on the assessment of
the relative distribution of a substance in a biphasic system
formed by 1-octanol/aqueous buffer under agitation
(�Shake-Flask�) [6,10,11], however, other approaches are
also available [12 – 14].

The use of experimental values of LogP as a descriptor
can provide more realistic models in QSA(P)R studies.
However, experimental determination of LogP can be a
laborious, time consuming and an expensive procedure.
Such situation, and the existence of vast amount of new
natural or synthesized molecules are quite problematic
factors for databases, as THOR [15] or PHYSPROP [16],
which have to remain constantly updated. Thus, computa-
tional approaches are currently very valuable tools to de-
rive LogP�s from chemical structures in QSA(P)R studies.

The first way to derive LogP�s from chemical structures
was the p-system [17 – 19]. Actually, various algorithms
with this objective, commercial or freeware, are available
[20]. Two principal approaches for LogP calculation are
used: (a) the substructure method based on fragments or
atoms (or both), and (b) the whole molecule method,
which is based on molecular properties [18]. Studies per-
formed for distinct sets of compounds and including a
comparison between experimental and predicted LogP
values by using different algorithms, have shown that there
is no unique algorithm that assures the best prediction of
LogP, despite of the fact that all calculated LogP values
have the same physical meaning [6, 9, 21 – 23]. Overall,
good agreement among calculated LogP�s has been ob-
served by Karthikeyan and co-workers [24] for a large set
of drugs, but this does not imply the same trend for a spe-
cific set of compounds.

Even though, current QSA(P)R studies do not specify
how and why an algorithm was selected arbitrarily for per-
forming a LogP calculation. However, regarding the ease
of accessing several algorithms for LogP generation, is it
acceptable to build a model using a specific algorithm
without testing for others? Is it not possible that better re-
sults could be obtained if the algorithm �B� is used instead
of �A�, leading to a more robust model? In a previous
study by Ferreira and Kiralj [25] it has been shown that
various algorithms for LogP calculation result in values
encoding different structural information and this, conse-
quently, lead to different QSAR models. In this work, the
relevance of the algorithm selection for performing LogP

calculation in QSA(P)R studies is revised, extended and
better explored. For this purpose, three data sets were
used to test sixteen distinct algorithms.

2 Methods

2.1 Data Sets

Three sets of anti-HIV compounds with no experimental
values of LogP were selected from the literature [25 – 27].
The basic structures of the compounds are presented in
Figure 1 and all the molecular structures are available in
the Supplementary Material, Figures S1 – S3.

The first two data sets were previously utilized by Ban-
sal and co-workers [26] and Huuskonen [27] in 2D-QSAR
studies, where a LogP descriptor was included in both pub-
lished models. The two data sets were selected with the ob-
jective to evaluate the influence of liphophilicity (LogP)
calculated by distinct algorithms on the final model. The
data sets were split into training sets (TS) and test sets
used in external validation (ES). TS1 [26] is constituted by
forty-two tricyclic phtalimide analogues reported as HIV-1
integrase (HIV-1 IN) inhibitors, with biological activity ex-
pressed as pIC50 (� log IC50). The original model was built
on a set of thirty compounds and included descriptors
MLogP, RBF (rotable bond fraction), nPhX (number of
halogen atoms bonded to carbon atoms in the aromatic
ring) and Jhete (Balaban-type index derived from electro-
negativity-weighted distance matrix) (Supplementary Ma-
terial, Table S1).
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Figure 1. Basic structures of the selected training sets (TS).
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TS2 [27] is constituted by forty-six tetrahydroimida-
zo[4,5,1-jk][1, 4]benzodiazepinone (TIBO) derivatives re-
ported as HIV-1 reverse transcriptase (HIV-1 RT) inhibi-
tors, where the biological activities were measured and ex-
pressed as Log 1/C (C is the IC50, the effective concentra-
tion of a compound to achieve 50% protection of MT-4
cell against the cytopathic effect of HIV-1). The original
model was built on forty-one compounds and five selected
descriptors: CLogP and atom-level E-state indices for
atoms C2, C4, C8 and C9 (Supplementary Material, Ta-
ble S2).

TS3 [28] is a set of thirty-three 4,5-dihydroxypyrimidine
carboxamides reported as HIV-1 IN inhibitors. An original
QSAR study with LogP in the model was developed and is
presented in this work. This TS is interesting since lipho-
philicity might be important for the inhibitory potency, be-
cause the possibility of the interaction between the aro-
matic side and an apolar environment located in the HIV-
1 IN active site [28, 29]. The biological activity was ex-
pressed in terms of the necessary concentration for 50% of
inhibition of the strand transfer reaction (IC50, in nM), and
transformed to pIC50.

2.2 Methods for LogP Calculation

The algorithms for LogP calculation employed were the
following: freeware methods ALOGPs, AB/LogP,
ACLogP, ALogP, COSMOfrag, miLogP, MLogP, XLogP2,
XLogP3, KOWWIN (available on-line at www.vcclab.org),
molLogP (available on-line at www.molsoft.com) and IA-
LogP (previously available on-line at www.logp.com, but
no any longer), a demo version of CSLogP (available on-
line at www.chemsilico.com), a freeware version of ACD/
LogP (commercial and freeware versions available at
www.acdlabs.com/download/logp.html) and the commer-
cial packages ChemOffLogP and CLogP (versions imple-
mented in Chem 3D Ultra 5.0). IALogP was used only for
TS3 because it was not available on-line at the time when
TS1 and TS2 were included in this work. Complete infor-
mation about the methods and the values obtained for
each sample (neutral chemical structures) can be found in
the Supplementary Material, Tables S3 – S6.

2.3 QSAR Studies

For TS1 and TS2 studies, the data matrices of dimensions
(30�4) and (41�5), respectively, were extracted from the
literature. For each compound, the LogP values were cal-
culated by the other fourteen algorithms (all values are
available in the Supplementary Material, Tables S4 and
S5, respectively) and new fourteen matrices were built, dif-
fering only in the LogP values. Matlab 7 software [30] was
used to build the models with multiple linear regression
(MLR), the regression method used in the original works.

For TS3, values of LogP descriptors were calculated us-
ing the sixteen algorithms available at that time (Supple-

mentary Material, Table S6). Initially, the Pearson correla-
tion coefficient (r) between each LogP and pIC50 was cal-
culated, and the algorithm with highest r was selected and
added to other 161 calculated molecular descriptors ob-
tained by several software (Supplementary Material, Ta-
ble S7). An a priori variable selection was performed and
the descriptors with j r j<0.3 were eliminated considering
that they did not contain relevant information. Thus, the
training set was reduced to 63 descriptors. The models
were built using Partial Least Squares (PLS) regression
[31] implemented in the Pirouette 4 software [32], on the
data previously autoscaled. The final descriptors were se-
lected by means of the most significant PLS regression co-
efficients. The compounds with Studentized residuals
above 2s were considered outliers. The data matrix for
this QSAR model, with dimensions (29�4), was used to
build the other 15 matrices by substituting the LogP de-
scriptors, similarly to TS1 and TS2. PLS models were built
for all these matrices.

According to literature [33 – 39], rigorous validation
procedures are necessary to assure statistical reliability of
the QSAR models. This approach has adopted in this
work. For all models, leave-one-out cross-validation
(LOO) was applied to determine the correlation coeffi-
cient of cross-validation, Q2

LOO (Supplementary Material,
Table S8). The correlation coefficient of calibration, R2,
was also calculated, as a measure of quality of fitting. The
recommended limits for these parameters are R2�0.6 and
Q2

LOO�0.5 [35, 38]. The corresponding errors SEC and
SEV should be as smaller as possible. The PRESSval values
should be smaller than the sum of squares of the response
values (SSY) [30].

The tabulated critical-F (Fp,n-p-1) values, or cF, where n is
the number of compounds and p is the number of descrip-
tors or latent variables in the final model, were obtained
for each TS and compared with the result obtained from
the F-test (a¼0.05). For this test, the higher the difference
between the cF and the F-test value, the more statistically
significant is the model [40].

For the external validation, the external sets ES1 and
ES2, the same used by Bansal and co-workers [26] and
Huuskonen [27], consisted of eight and twenty-four com-
pounds, respectively. The ES3, corresponding to TS3, con-
tained seven compounds and is considered appropriate be-
cause the data split follows literature recommendations
[35], being a significant sample of the training set (24%,
without outliers).

The robustness of the models were examined by leave-
N-out cross validation (LNO, with N¼1 to 10 for TS1 and
TS2, and N¼1 to 6 for TS3). The presence of chance cor-
relation was checked by the y-randomization test [38]. Ro-
bustness is a measure of internal performance which shows
whether the model is not significantly affected by small
and deliberate changes in their parameters [42], as in the
LNO cross-validation. Chance correlation in QSAR
means that any variable which is not in reality related to
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the drug action can be well statistically correlated with
biological activity, what results in statistically acceptable
but nonsense models, and can be accessed by the y-ran-
domization test. Both strategies can compare the influence
of the different LogP descriptors in the models, because
they can show if any of them leads to an unreliable model.

The LNO cross-validation employs smaller training sets
than the LOO procedure, and QSAR models with a high
Q2

LNO and stable can be considered robust [43]. For each
value of N, the pre-randomization of all rows of the data
(X with corresponding y) was performed three times in or-
der to decrease the impact that the withdrawal of sets of
samples in specific sequences could have on the values of
Q2

LNO. It is expected that the average values obtained from
the triplicate tests are close to that of Q2

LOO, with small
standard deviations [35]. The y-randomization test was
performed ten times [33]. The adopted limits are based on
the intercepts values proposed by Eriksson and co-workers
[39], but in this work all randomized models should pres-
ent R2�0.3 and Q2

LOO�0.05. The y-randomization test is
useful to verify the possibility that models with high values
of R2 and Q2

LOO could suffer from chance correlation [34].
LNO and y-randomization tests were performed in Matlab
7 [30] and the plots were built in the DataFit 9 [42].

Taking into account the specific objectives of this work,
the interpretation of the models was not considered rele-
vant. The interpretations of the original models for TS1
and TS2 can be found in the literature [26, 27].

3 Results and Discussion

3.1 Analysis for TS1 and TS2

The first step in TS1 and TS2 studies was to check if any
other LogP descriptor would have a r value higher than
that from LogP used in the original works [26, 27]. The re-
sults obtained for the two training sets are in Table 1.

For TS1, correlation coefficients vary from r¼0.61 for
COSMOfrag to r¼0.24 for ClogP. The descriptor used in
the literature was MLogP, with r¼0.51. In the case of TS2,
the highest r value obtained was r¼0.54 for ACLogP and
the lowest r¼0.05 for CSLogP, while the CLogP descrip-
tor presented r¼0.30, a difference of 0.24 with respect to
ACLogP.

It is interesting to note that in both cases, the literature
descriptor did not yield the highest value of r. For instance,
the CLogP descriptor had the second lowest r value in
TS2, being higher only from that of CSLogP. Similar result
were obtained for TS1, where MLogP descriptor also pos-
sessed the second lowest r value. These preliminary results
indicate that it might not be enough simply to select the
LogP descriptor with the highest r to the biological activity
in a QSAR study.

Multivariate models for TS1 and TS2 were obtained
(Supplementary Material, Tables S9 and S10) and com-

pared for their internal and external statistical quality (Ta-
bles 2 and 3), and validated for their robustness and possi-
ble chance correlation using the LNO cross-validation and
y-randomization tests, respectively.

3.2 Analysis of QSAR Models for TS1

Evaluating all statistical parameters (Table 2), the CSLogP
model can be considered as the most appropriated model
for TS1. This model is equivalent to that from the litera-
ture. Although the statistical quality of the MLogP model
could be considered superior with respect to the parame-
ters R2, PRESScal, Q2

LOO, PRESSval and F, the differences
between the two models are very small. However, the
model CSLogP, besides being equivalent to MLogP, has a
relatively low AREpred and high R2

pred. The external valida-
tion is a very important step in QSA(P)R studies and,
therefore, was also considered an important step to evalu-
ate the predictability of a model, before applying it to un-
known samples. Several authors argue that only models in-
ternally and externally validated may be considered stati-
cally realistic and applicable for practical purposes [35 –
37]. Thus, even with the internal quality of the MLogP
model being equivalent to CSLogP model, the last may be
considered better due to its performance in external vali-
dation.

Both models were satisfactory in the LNO cross-valida-
tion and y-randomization test (Fig. 2). For the CSLogP
model, the average Q2

LNO is 0.66, the same for Q2
LOO, and

the standard deviations for each number of excluded sam-
ples, N, can be considered acceptable, (maximum devia-
tion is 0.07 for L9O). For the model MLogP, the Q2 statis-
tics is similar (average Q2

LNO is 0.65 and Q2
LOO is 0.66), but

much larger standard deviations are observed (see Fig. 2).
In the y-randomization test, all values for R2 and Q2

LOO for
both models are below the acceptable limits. Even so, the
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Table 1. Pearson correlation coefficient (r) between the algo-
rithms and the biological activities of TS1 and 2.

Algorithm r TS1 r TS2

AB/LogP 0.52 0.36
ACD/LogP 0.55 0.45
ACLogP 0.51 0.54
ALogP 0.60 0.46
ALOGPs 0.57 0.32
ChemOffLogP 0.59 0.52
CLogP 0.24 0.30 [a]
COSMOfrag 0.61 0.43
CSLogP 0.54 0.05
KOWWIN 0.58 0.38
miLogP 0.57 0.41
MLogP 0.51 [a] 0.43
molLogP 0.32 0.37
XLogP2 0.55 0.31
XLogP3 0.53 0.39

[a] values avaliables in the references.
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result of LNO validation is slightly superior for the model
CSLogP showing that this model is more robust in relation
to the MLogP model. The obtained results for all models
for TS1 are available in the Supplementary Material, Ta-
bles S11 and S12.

In the case of a comparison between the r�s from
CSLogP and MLogP, the former would have been chosen.
Considering the similarities between the two models, it
can be suggested that there would be a good chance of ob-
taining of a model formed by the same four descriptors if
Bansal and co-workers [26] had used the CSLogP algo-
rithm. However, in a work where several algorithms would
be used, only comparing the r�s may not be enough to
choose an algorithm.

The models obtained with the ALOGPs and CLogP de-
scriptors also deserve a special attention. Among all mod-

els from Table 2, the former was better in R2, Q2
LOO and in

the F-test, and the latter in the external validation. But the
model CLogP had the worst results in the LNO cross-vali-
dation (Fig. 3). Considerable variation of the Q2

LNO values
with respect to the Q2

LOO may be observed, and also large
standard deviations at high N can be noticed. Besides that,
unacceptable average values of Q2

LNO below 0.5 occur in
50% of the cases, indicating that this model does not pro-
vide the adequate robustness and can be considered as the
worst model.

The model ALogP deserves attention because it has the
second highest r (Table 1). This model had explained and
predicted variances equivalent to those for the models
MLogP and CSLogP, but was rejected due to poor results
from external validation, (R2

pred¼0.31, the only value be-
low 0.5). Moreover, the results of the y-randomization test
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Table 2. Results for explained and predicted variance and external validation of the models for TS1.

R2 SEC PRESScal Q2
LOO SEV PRESSval [a] F [b] R2

pred SEP AREpred (%)

MLogP[c] 0.81 0.25 1.55 0.66 0.31 2.80 27.20 0.62 0.34 5.04
AB/LogP 0.80 0.26 1.73 0.57 0.35 3.67 24.74 0.59 0.36 4.97
ACD/LogP 0.78 0.26 1.74 0.54 0.36 3.91 24.56 0.59 0.36 5.02
ACLogP 0.81 0.25 1.58 0.63 0.33 3.21 27.60 0.59 0.36 4.97
ALogP 0.82 0.25 1.53 0.65 0.31 2.99 28.85 0.31 0.46 5.98
ALOGPs 0.84 0.27 1.40 0.69 0.31 2.84 31.96 0.52 0.38 5.27
ChemOffLogP 0.82 0.25 1.57 0.65 0.31 2.98 27.97 0.50 0.40 5.63
CLogP 0.75 0.29 2.18 0.50 0.38 4.26 18.36 0.66 0.33 4.66
COSMOfrag 0.79 0.27 1.79 0.57 0.35 3.67 23.64 0.51 0.39 5.21
CSLogP 0.81 0.25 1.59 0.65 0.31 2.94 27.43 0.64 0.34 4.88
KOWWIN 0.80 0.26 1.71 0.61 0.33 3.37 25.14 0.62 0.35 4.75
miLogP 0.81 0.25 1.61 0.62 0.33 3.24 27.04 0.57 0.36 5.03
molLogP 0.78 0.28 1.92 0.44 0.40 4.76 21.70 0.56 0.37 5.48
XLogP2 0.80 0.26 1.68 0.63 0.32 3.17 25.58 0.55 0.37 5.31
XLogP3 0.81 0.25 1.59 0.65 0.31 2.98 27.41 0.52 0.38 5.27

[a] SSY¼8.58; [b] F4,26¼2.74 (a¼0.05); [c] literature model.

Table 3. Results for explained and predicted variance and external validation of the models for Statiscs TS2.

R2 SEC PRESScal Q2
LOO SEV PRESSval [a] F [b] R2

pred SEP AREpred (%)

CLogP [c] 0.85 0.52 9.65 0.80 0.56 13.04 40.01 0.82 0.64 8.23
AB/LogP 0.81 0.59 12.21 0.73 0.66 17.75 30.18 0.79 0.69 10.17
ACD/LogP 0.83 0.56 10.93 0.76 0.61 15.50 34.53 0.83 0.63 9.05
ACLogP 0.82 0.57 11.29 0.76 0.62 15.72 33.18 0.82 0.65 9.14
ALogP 0.82 0.57 11.54 0.75 0.63 16.34 32.31 0.81 0.67 9.51
ALOGPs 0.80 0.61 13.13 0.72 0.66 17.95 27.57 0.75 0.77 11.06
ChemOffLogP 0.81 0.59 12.02 0.74 0.64 16.99 30.73 0.78 0.71 10.39
COSMOfrag 0.83 0.56 11.08 0.76 0.61 15.49 33.97 0.81 0.66 9.23
CSLogP 0.80 0.57 13.22 0.72 0.67 18.35 27.32 0.73 0.79 11.36
KOWWIN 0.84 0.54 10.17 0.78 0.59 14.41 37.60 0.83 0.62 8.79
miLogP 0.83 0.50 10.79 0.76 0.61 15.26 35.04 0.83 0.62 8.61
MLogP 0.82 0.58 11.78 0.74 0.64 16.97 31.52 0.81 0.66 9.46
molLogP 0.84 0.50 10.45 0.78 0.59 14.10 36.43 0.82 0.64 9.46
XLogP2 0.82 0.58 11.93 0.74 0.64 16.76 31.04 0.80 0.69 9.66
XLogP3 0.83 0.54 10.92 0.76 0.61 15.41 34.55 0.83 0.63 8.81

[a] SSY¼64.82; [b] F5,35¼2.48 (a¼0.05); [c] literature model.
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(Supporting Information, Table S11) clearly indicate chance
correlation. In the LNO cross-validation (Supporting In-
formation, Table S12), the result for L10O (0.47) is below
the acceptable limit and low compared to Q2

LOO (0.62).
Therefore, this model may be considered as of the lowest
quality from TS1.

3.3 Analysis of QSAR Models for TS2

The literature model with CLogP descriptor showed to be
of the highest quality for TS2 (Table 3). KOWWIN de-
scriptor yielded a statistically equivalent model, and the
two models differed in the result of the F-test (40.01 for
CLogP and 37.60 for KOWWIN), For both models, LNO
validation presented average Q2

LNO practically identical to
Q2

LOO (0.79 and 0.80 for CLogP, and 0.77 and 0.78 for
KOWWIN), as well as maximum standard deviations of

0.04 from L10O for CLogP, and 0.03 from L8O for KOW-
WIN. The results of the y-randomization test have shown
that none of the models possess chance correlation
(Fig. 4).

The basic statistics (R2 and Q2
LOO) for other models ob-

tained from TS2, the results of external validation and
LNO cross-validation, are inside acceptable limits. Howev-
er, miLogP model is the only one that overcomes modestly
the limits for y-randomization test in one out of 10 ran-
domizations (Supporting Information, Table S13).

The obtained results for TS1 and TS2 have shown that,
despite that fact that the literature models are of good
quality, there is a possibility to obtain improved, equiva-
lent or even inferior quality models when other LogP de-
scriptors are used. It can be concluded that not only the
basic statistical parameters R2, Q2

LOO and F-ratio are
enough to test the quality of the models, but other valida-
tions should be considered, such as external validation,
LNO and y-randomization. Thanks to these tests, it was
possible electing the model CSLogP as the best for TS1,
and especially miLogP as the worst for TS2. The results of
y-randomization test and LNO cross-validation of TS2 are
available in the Supplementary Material, Tables S13 and
S14.

The most important observation is that using only r is
not enough to identify the most appropriate LogP descrip-
tor to be used in a QSA(P)R study.

3.4 New Study – TS3

Similarly to the results for TS1 and TS2 (Table 1), it is pos-
sible to observe a large variation in r between the sixteen
LogP�s and biological activity, for the complete data set 3
(Table 4). The results show that the best descriptors are
COSMOfrag (r¼0.55) and XLogP3 (r¼0.54), and the
worst are MLogP (r¼0.27) and ClogP (r¼0.31). Thus, the
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Figure 2. Plots for LNO cross-validation (left) and y-randomi-
zation test (right) for the models CSLogP and MLogP of the
TS1.

Figure 3. Plots for LNO cross-validation (left) and y-randomi-
zation test (right) for the models ALOGPs and CLogP of
theTS1.

Figure 4. Plots for LNO cross-validation (left) and y-randomi-
zation test (right) for the models CLogP and KOWWIN of TS2.
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COSMOfrag descriptor was used to obtain the initial mod-
el and to split the data set into TS3 and ES3.

Four compounds, 8, 11, 34 and 39 presented Studentized
residuals above 2s, and were considered as outliers. The
initial model with COSMOfrag descriptor was obtained
when also using the energy of lowest unoccupied molecu-
lar orbital (LUMO), solvation connectivity index chi-0
(X0sol), and bond-type E-state index SeaC2C2aa (Supple-
mentary Material, Table S15). This model was built by
PLS regression with two latent variables.

An ES containing seven compounds (10, 12, 16, 17, 25,
26 and 35), with low leverage in the model on the com-
plete data set, was selected. The samples are good repre-
sentatives of the whole pIC50 range and the training sets
structural diversity. After this step, other 15 models were
built exchanging the LogP descriptors as before.

Table 5 presents the statistics for the sixteen models ob-
tained. The regression coefficients are in the Supplementa-
ry Material, Table S16. The model using COSMOfrag de-
scriptor has the highest Q2

LOO and R2
pred. Besides the sig-

nificant variation in r, all the models have R2 around 0.60,
indicating the importance of other descriptors to the mod-
els.

Despite that all the models were built with twenty-two
samples and two latent variables, there is a reasonable var-
iation in the amount of information contained in each
model, with maximum difference of 25.75% (between
COSMOfrag and CLogP models). Considering that
LUMO, X0sol, and SeaC2C2aa descriptors are in common
for all 16 models, contributions of the different LogP de-
scriptors are clear. Only two LogP�s led to acceptable
models: COSMOfrag and XLogP3. These models ex-
plained 64.0% and 62.0%, and predicted 52.0%, and
50.0% of total variance, respectively. They also presented
the smallest values of SEV. The information retrieved
from two latent variables was highly significant, indicating
that the models used most of the available information in
the original descriptors. This can explain the statistical sig-
nificance observed by the high F-test value with respect to
the critical-F, 3.52 (for p¼2 and n-p-1¼19), and also by
the PRESSval values, which are lesser than 18.46 (the result
found for the SSY) [33]. These two models were also able
to provide the best results in the external validation of this
training set, with R2

pred above 0.50, AREpred below 10.00%,
and the lowest SEP.

The models COSMOfrag and XLogP3 show good re-
sults for LNO validation (Fig. 5), and this may be consid-
ered as the most important information in this study. There
was a satisfactory performance in the y-randomization test
only these two models, while the others present some re-
sults out of the adopted limits (R2�0.3 and Q2

LOO�0.05
for all results). In this case, exactly these two algorithms
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Table 4. Pearson correlation coefficient (r) between the algo-
rithms and the biological activities of TS3.

Algorithm r

AB/LogP 0.42
ACD/LogP 0.47
AcLogP 0.42
ALogP 0.44
ALOGPs 0.47
ChemOffLogP 0.45
CLogP 0.31
COSMOfrag 0.55
CSLogP 0.46
IALogP 0.41
KOWWIN 0.43
miLogP 0.39
MLogP 0.27
molLogP 0.37
XLogP2 0.33
XLogP3 0.54

Table 5. Results for explained and predicted variance and external validation of the models for TS3.

R2 SEC PRESScal Q2
LOO SEV PRESSval [a] F [b] R2

pred SEP AREpred (%)

AB/LogP 0.64 0.60 6.73 0.42 0.70 10.63 16.55 0.54 0.75 10.53
ACD/LogP 0.62 0.61 7.09 0.40 0.71 11.13 15.24 0.20 0.94 13.09
ACLogP 0.61 0.62 7.25 0.37 0.73 11.64 14.70 0.25 0.90 12.27
ALogP 0.61 0.62 7.25 0.37 0.73 11.59 14.68 0.28 0.88 11.94
ALOGPs 0.61 0.62 7.20 0.38 0.72 11.47 14.86 0.22 0.92 12.64
ChemOffLogP 0.63 0.60 6.91 0.41 0.70 10.84 15.89 0.04 1.08 14.88
CLogP 0.66 0.58 6.35 0.47 0.67 9.74 18.10 �0.09 1.19 17.56
COSMOfrag 0.65 0.55 6.46 0.52 0.61 8.94 19.52 0.59 0.68 8.96
CSLogP 0.61 0.62 7.24 0.44 0.68 10.26 14.73 0.34 0.82 11.19
IALogP 0.61 0.62 7.26 0.44 0.69 10.40 14.67 0.39 0.78 10.52
KOWWIN 0.63 0.60 6.91 0.41 0.70 10.84 15.89 0.04 1.08 14.88
miLogP 0.61 0.62 7.29 0.35 0.74 11.95 14.55 0.30 0.86 11.62
MLogP 0.61 0.62 7.29 0.41 0.70 10.89 14.57 0.32 0.85 11.34
molLogP 0.61 0.62 7.20 0.38 0.72 11.49 14.84 0.23 0.93 12.76
XLogP2 0.60 0.62 7.34 0.37 0.73 11.69 14.38 0.43 0.80 11.04
XLogP3 0.64 0.59 6.57 0.50 0.65 9.23 17.21 0.55 0.70 9.37

[a] SSY¼18.46; [b] F2,19¼3.52 (a¼0.05).
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present the best r�s explain and use larger amount of origi-
nal information, and have the best results for the external
validation.

On the other hand, the models with the descriptors
KOWWIN, ChemOffLogP and, specially, CLogP, had the
poorest statistics. In the external prediction, R2

pred values
(less than 0.1) were unacceptable and show no correlation
between the experimental and predicted activities. The
three models also failed in the LNO validation and y-ran-
domization tests (Fig. 6). The results from y-randomiza-
tion test and LNO cross-validation of TS2 are available in
the Supplementary Material, Tables S17 and S18.

3.5 Overview of the Results

Having in mind the questions raised initially, it is rather
clear that the use of any algorithm to calculate LogP�s
without an a priori selection or comparison among them,
can lead to poor results in a QSAR study. Distinct algo-
rithms can contribute with different amounts and types of
information encoded in LogP�s, leading to models with
reasonable statistical differences, as occurred with TS3.

Although the selected LogP descriptor for the new
study (TS3) has the highest r (Table 4), this is not sufficient
to generate the best multivariate regression model. This
fact becomes clear when analyzing the Huuskonen�s data
[27], in which the algorithm used by the author yielded the
second worst r. The same can be said about the Bansal and
co-workers� data [26].

The performance of the models in all validations carried
out also have shown to be important in the QSAR studies.
In the case of TS1, the external validation aided to choose
the best model. For TS2, despite that all the models ap-
peared to be statistically equivalent, two of were based on
chance correlation. Thus, to select the most appropriate al-

gorithm for LogP calculation for each case in the present
work, comparison between the QSAR models fully vali-
dated had to be carried out.

Finally, it is possible to observe that there is no unique
algorithm leading always to the highest quality QSAR
models, as comes out clearly from the present analyses.

In a previous work from our group [25], the problem of
the most relevant lipophilicity descriptor(s) in 3 regression
models for b-lactam inhibitors of 3 strains of Salmonella
thypimurium was posed, and solved by exploratory and
PLS analyses. b-Lactam antibiotics belong to a specific
class of organic compounds for which lipophilicity is an es-
sential determinant of variations in antibacterial activity.
The calculated lipophilicity descriptors were not of pure
lipophilic nature, but included various steric and electronic
features, because of which they behaved as general de-
scriptors during the variable selection (more than one lipo-
philicity descriptor was selected). These trends were ob-
served for all lipophilicity descriptors (7 LogP�s and 2 non-
LogP�s), meaning that the problem of the choice of the
most relevant LogP may be extended to other types of lip-
ophilicity descriptors.

In another QSAR approach [44] the same b-lactam in-
hibitors of S. thypimurium were described by another set
of descriptors, denominated a priori, mainly topologically
derived, and some of them were considered as amphiphi-
licity descriptors. The two studies about the b-lactams
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Figure 5. Plots for LNO cross-validation (left) and y-randomi-
zation test (right) for the models COSMOfrag and XLogP3 of
TS3.

Figure 6. Plots for LNO cross-validation (left) and y-randomi-
zation test (right) for the models KOWWIN, ChemOffLogP and
CLogP of TS3.
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have shown rather clearly that the calculated LogP�s could
be replaced by steric, electronic, topological and combined
descriptors. Such a situation indicates that distinct algo-
rithms for LogP calculations in QSAR studies may result
in descriptors of rather different contents of liphophilic na-
ture. This is probably the reason why PLS models contain-
ing different LogP�s in the present work can be distin-
guished in terms of statistical parameters and model vali-
dations, especially in the case of TS3.

Lipophilicity is a property which is always important for
biological activity of a drug because it is a measure of
drug�s interaction with any kind of media (hydrophobic,
amphyphilic, hydrophilic, lipophilic, etc.). However, this
does not imply always that variations in lipophilicity for a
set of drugs are important for the variations in the respec-
tive biological activity. In the absence of experimental
LogP, it is recommended that the evaluation of lipophilici-
ty�s role in drug action is carried out in the following steps:
1) calculation of LogP�s (and eventually other lipophilicity
parameters) by diverse algorithms; 2) inclusion of the ob-
tained descriptors in the total descriptors pool; 3) variable
selection, construction of the final regression model and
its complete validation.

In fact, the problem of the most relevant lipophilicity
descriptor in a QSAR study may be extended to other
types of molecular descriptors which are sensitive to calcu-
lation procedures performed: atomic charges, dipole mo-
ment and its components, polarizability, hyperpolarizabili-
ties and their components, and so on.

4 Conclusions

The results strengthen the hypothesis that, when the exper-
imental values of LogP are not available, the choice of an
algorithm for calculation of LogP, from chemical struc-
tures, may influence the final results of a QSA(P)R study.
Among the tested algorithms, two of the most suitable to
relate the lipophilicity of each training set with the biologi-
cal activities were CSLogP for TS1 and CLogP for TS2.
Both algorithms are commercial and, in this case, a good
alternative would be the use of the freeware algorithm
MLogP for TS1 (as in the original work) and KOWWIN
for TS2.

It is noteworthy that the results presented in this work
have no intention to delegate more or less relevance to the
tested algorithms, to consider some as appropriate or not
for any QSA(P)R study or to quarrel the results from oth-
er research groups. Different training sets and activities
(or properties) have its own characteristics, and the same
can be said regarding to the LogP algorithms. Because of
this fact, experimental values, when available, should be
always the first choice to obtain more realistic models.

For QSAR studies where LogP is important to describe
the drug mechanism of action and for which no experi-
mental data are available, it is highly recommended to

proceed with the procedure suggested in this work, taking
into account the availability of freeware softwares.
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Farmácia, Edusp, São Paulo 2003, pp. 219 – 278.

[3] W. M. Meylen, P. H. Howard, J. Pharm. Sci. 1995, 84, 83 –
92.

[4] A. Breindl, B. Beck, T. Clark, R. C. Glen, J. Mol. Model.
1997, 3, 142 – 155.

[5] C. Hattotuwagama, D. R. Flower, Bioinformation 2006, 1,
257 – 259.

[6] M. Medic-Saric, A. Mormar, J. Jasprica, Acta Pharm. 2004,
54, 91 – 101.

[7] G. E. Kellog, D. J. Abraham, Eur. J. Med. Chem. 2000, 35,
651 – 661.

[8] Y. Sakwatani, K. Kasai, Y. Noguchi, J. Yamada, QSAR
Comb. Sci. 2007, 26, 109 – 116.

[9] F. A. L. Ribeiro, M. M. C. Ferreira, J. Mol. Struct.-Theo-
chem. 2003, 663, 109 – 126.

[10] G. L. Patrick, An Introduction to Medicinal Chemistry, Ox-
ford, New York, 2001, pp. 128 – 153.

[11] Medicinal Chemistry: Principles and Practice (Ed: F. D.
King), RSC, Cambridge 2002, pp. 195 – 214.

[12] S. A. Teijeiro, G. N. Moroni, M. I. Motina, M. C. Briñón, J.
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