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Abstract
In this study, receptor-dependent (RD) 3D-QSAR models were built for a set of thirty-
seven isoniazid derivatives bound to the enoyl-acp reductase from M. tuberculosis, called
InhA (PDB entry code 1zid). Ligand-receptor (L-R) molecular dynamics (MD)
simulations [500000 steps; the step size was 0.001 ps (1 fs)] were carried out at 310 K (bio-
logical assay temperature). The hypothesized active conformations resulting from a
previously reported receptor-independent (IR) 4D-QSAR analysis were used as the
molecular geometries of each ligand in this structure-based L-R binding research. The de-
pendent variable is the reported MIC values against M. tuberculosis var. bovis. The
independent variables (descriptors) are energy terms of a modified first-generation
AMBER force field combined with a hydration shell aqueous solvation model. Genetic
function approximation (GFA) formalism and partial least squares (PLS) regression were
employed as the fitting functions to develop 3D-QSAR models. The bound ligand
solvation energy, the sum of electrostatic and hydrogen bonding energies of the unbound
ligand, the bending energy of the unbound ligand, the electrostatic intermolecular L-R
energy, and the change in hydrogen bonding energy upon binding were found as
important energy contributions to the binding process. The 3D-QSAR model at 310 K has
good internal and external predictability and may be regarded as representative of the
binding process of ligands to InhA.

1 Introduction

Enoyl-acp reductase (ENR) is a key regulatory step in fat-
ty acid elongation and catalyzes the NADH-dependent
stereospecific reduction of a,b-unsaturated fatty acids
bound to the acyl carrier protein [1 – 3]. Enzymes that
form the biosynthetic apparatus for fatty acid production,
the fatty acid synthase (FAS), are considered ideal targets
for designing new antibacterial and antimycobacterial
agents due to the difference between the molecular organ-
ization of FAS found in most bacteria/mycobacteria and
mammals [4 – 6].

Biochemical evidence has suggested that isoniazid
(INH), a first-line drug to treat tuberculosis disease, blocks
the mycolic acids biosynthesis in M. tuberculosis. Those
acids constitutes the major components of mycobacterial
cell wall [4, 7, 8]. The mycolic acids as well as the key en-
zyme responsible for their elongation are considered at-

tractive targets for the rational design of new antitubercu-
losis agents.

The crystal structure of the M. tuberculosis enoyl-acp re-
ductase, named InhA, in complex with cofactor nicotina-
mide adenine dinucleotide (NAD) and the inhibitor INH
was isolated by Rozwarski and co-workers (1998) (PDB
entry code 1zid) [9]. The drug mechanism of action in M.
tuberculosis involves a covalent attachment of the activat-
ed form of the drug (isonicotinic acyl anion or radical) to
the carbon at position 4 of the nicotinamide ring of NAD
bound within the active site of InhA, resulting in the for-
mation of an acylpyridine/NAD adduct [9].

Previous receptor-independent (RI) 4D-QSAR analysis
of a set of hydrazides (INH analogues) was carried out to
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determine the optimum model and alignment for those
compounds. It was assumed that all hydrazides would act
like INH, forming an adduct with cofactor NAD in the ac-
tive site of InhA [10].

The hypothesized active conformations resulting from a
RI 4D-QSAR analysis can be used as structure design tem-
plates, which include their deployment as the molecular
geometries of each ligand in a structure-based ligand-re-
ceptor binding research [11].

In this work, a set of thirty-seven hydrazides (including
INH) are explored in terms of ligand-receptor MD simula-
tions to generate the thermodynamic descriptors regarding
both ligand-receptor states, bound (L-R) and unbound (L
and R, respectively). These independent variables were
used to construct receptor-dependent (RD) 3D-QSAR
models employing a genetic function approximation
(GFA) [12] formalism and partial least squares (PLS) [13]
regression as the fitting functions. Both GFA and PLS are
valuable analytical tools for datasets that have more de-
scriptors than samples, where GFA selects appropriate ba-
sis functions to be used in a model of the data and PLS re-
gression is the fitting technique to weigh the basis func-
tions� relative contributions in the final model.

2 Methodology

2.1 Biological Data and Starting Geometries for Ligands
and Receptor (InhA)

The same set used in [10] was investigated here: 37 hydra-
zides, including INH, which were evaluated with the same
biological assay. Biological activities were reported as the
minimum inhibitory concentration, MIC (mg/mL), against
strains of M. tuberculosis var. bovis at 310 K [14 –17]. The
minimum inhibitory concentrations were converted to mo-
lar units and then expressed in negative logarithmic units,
pMIC (� log MIC). The range in activity for the analogues
is about five pMIC units (0.22 –4.70). Additionally, six com-
pounds were selected as an external validation set, using
the Hierarchical Cluster Analysis (HCA) (see Table 1).

It was assumed that all compounds would act like the
lead drug INH, forming an adduct with cofactor NAD in
the active site of InhA, as reported by Rozwarski and co-
workers [9], and the hypothesized active conformations
from a previous RI 4D-QSAR analysis [10] were used as
the ligands starting geometries. Each structure was energy-
minimized using the HyperChem 7.51 [18] MMþ force
field without any restriction. The Molsim 3.2 program [18]
was also used for the optimization of each structure inves-
tigated. Partial atomic charges were computed using the
AM1 [20] semiempirical method, also implemented in the
HyperChem program [18]. The charges were calculated
using the electrostatic potential [18].

The X-ray structure of the complex InhA-NAD-INH
(PDB entry code 1zid, 2.7 �́ of resolution) was selected as

starting model for the receptor geometry. The 1zid struc-
ture has one polypeptide chain or subunit containing 268
amino acid residues. The N-terminus and C-terminus were
both modeled as neutral and the CH3 groups were used as
the block groups. AMBER [21] partial charges were as-
signed to all atoms of the enzyme structure, except to the
block groups, using the HyperChem 7.51 program [18].
The charge state of ionizable residues was modeled at neu-
tral pH. Lone pair electrons were not modeled explicitly.
Only four water solvent molecules, which participate in li-
gand-receptor (L-R) interaction [9], were maintained in
the InhA active site model. The MOLSIM 3.2 program
[19] was used to perform the energy minimization of the
modeled InhA-NAD-INH complex. The energy-mini-
mized structure of the complex was used as initial struc-
ture in the MD calculations (item 2).

2.2 Molecular Dynamics Procedure and QSAR Models

Energy minimization and MD calculations were per-
formed using the MOLSIM program, version 3.2 [19]. The
hydration shell model proposed by Hopfinger [22] was in-
cluded in the force field representation to estimate aque-
ous solvation energies. Solvation energy and hydrogen
bonding energy contributions were only evaluated for the
lowest energy structures. The dielectric constant was set to
a value of 3.5. The simulation temperature was 310 K, the
same used in the biological assay [14 – 17]. It was held con-
stant during the simulation by coupling the system to a
temperature external bath with a relaxation time of 0.01
ps [23].

The energy-minimized structure of the complex InhA-
NAD-INH was used as initial structure in MD calcula-
tions. The MD simulations24 protocol employed 500000
steps with a step size of 0.001 ps (1 fs) at 310 K. An output
trajectory file was saved every 20 simulation steps result-
ing 25000 conformations. The solvation energy of the low-
est energy conformation obtained from MD simulations
was calculated using the hydration shell model [22]. The
lowest energy conformation of the InhA-NAD-INH mod-
el was used to dock the energy-optimized structures of all
ligands (adducts) employing the optimum model/align-
ment selected in [12] (HyperChem 7.51) [18]. The energy-
minimized structure of each complex InhA-NAD-ana-
logue was used to perform MD simulations following the
same protocol mentioned before, and an output trajectory
file was recorded every 20 simulation steps. The solvation
energy and hydrogen bonding energy contributions of the
lowest energy conformation from MD simulations of each
InhA-NAD-analogue model (L-R bound state) were cal-
culated. At this point, the L-R bound state thermodynamic
descriptors were generated.

The INH/NAD adduct was extracted from the lowest
energy conformation of the InhA-NAD-INH complex
(HyperChem 7.51) [18] and the InhA model without the
INH/NAD adduct was employed to obtain the thermody-
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namic descriptors of the receptor unbound state (R un-
bound state). The energy-minimized structure of the InhA
model without the INH/NAD adduct was used as initial
structure to perform the MD simulations, as already de-
scribed. The solvation energy and hydrogen bonding ener-
gy contributions of the R lowest energy conformation ob-

tained from MD simulations were calculated, and the R
unbound state thermodynamic descriptors were generat-
ed.

Likewise, the thermodynamic descriptors of each ligand
(L) in its unbound state were generated. The lowest ener-
gy conformation of each InhA-NAD-analogue model
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Table 1. Structures and Biological Activities of the 37 Hydrazides [a].

[a] Activity was measured as the minimum inhibitory concentration (MIC) against strains of M. tuberculosis var. bovis at 310 K and given as pMIC
(see [19 – 22]). The test set comprises the compounds Idv90, Idv128, Idv131, Idv132, and INHd51 (underlined letters). INH¼ isoniazid; INHd¼aro-
matic, heteroaromatic, and ring substituted hydrazides, isoniazid derivatives. Idv¼heterocyclic acid hydrazides and derivatives.
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from MD simulations was used to extract the adduct, ana-
logue/NAD (HyperChem 7.51) [18]. The energy-mini-
mized structure of each adduct model was employed as ini-
tial structure to perform the same MD simulations proto-
col. The solvation energy and hydrogen bonding energy
contributions of each L lowest energy conformation from
MD simulations were calculated.

The thermodynamic descriptors from MD calculations
and their respective definitions [25] are presented in Ta-
ble 2. The energy terms (52 descriptors) were used as inde-
pendent variables to built QSAR models employing PLS
regression and GFA algorithm, which are fitting functions
available in the WOLF 5.5 program [26].

The GFA algorithm uses a population of many models
and tests only the final, fully-constructed model. Improved
models are constructed by performing the genetic cross-
over operation to recombine the terms of the better-per-
forming models. The initial models are generated by ran-
domly selecting some number of features from the training
data set, building basis functions from these features using
the user-specified basis functions types, and then con-

structing the genetic models from random sequences of
that basis functions. GFA can build models using not only
linear polynomials but also higher-order polynomials,
splines, and other nonlinear functions [12]. In this study,
the top eight QSAR models were selected by the WOLF
5.5 program [26]. Linear and second-degree polynomials
were the functions tested.

Statistical measures of significance including the corre-
lation coefficient (r2), leave-one-out (LOO) cross-valida-
tion coefficient (q2), least squares error (LSE), and lack-
of-fit measure (LOF) developed by Friedman, were calcu-
lated to test the robustness of the models. The cross-corre-
lation descriptor matrix was examined to eliminate trial
QSARs in which pairs of energy terms have cross-correla-
tion coefficients greater than 0.70 (GFA-PLS). Also, the
cross-correlation matrix of residuals of fit between pairs of
models was computed to determine if the top eight QSAR
models provide common or distinct information. Pairs of
models with highly correlated residuals of fit (R�1) are
judged to be nearly the same model, while pairs of models
with poorly correlated residuals (R<0.5) are distinct from

1458 � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.qcs.wiley-vch.de QSAR Comb. Sci. 28, 2009, No. 11-12, 1455 – 1464

Table 2. Thermodynamic descriptors from MD simulations and their definitions [9].

Descriptors Definitions of the thermodynamics descriptors

DEstre¼ELRstre�ELstre�ERstre Change in stretching energy upon binding
DEbend¼ELRbend�ELbend�ERbend Change in bending energy upon binding
DEtors ¼ELRtors�ELtors�ERtors Change in torsion energy upon binding
DEvdW¼ELRvdW�ELvdw�ERvdW Change in van der Waals energy upon binding
DEel¼ELRel�ELel�ERel Change in electrostatic energy upon binding
DEE1,4¼ELRE1,4�ELE1,4�ERE1,4 Change in 1,4 interaction energy upon binding
DEHb ¼ELRHb�ELHb�ERHb Change in hydrogen bonding energy upon binding
DEsolv¼ELRsolv�ELsolv�ERsolv Change in solvation energy upon binding
DEstreþbend¼ELRstreþbend�ELstreþbend�ERstreþbend Sum of changes in stretching and bending energies
DEstreþbendþ tors¼ELRstreþbendþ tors�ELstreþbendþ tors�ERstreþbendþ tors Sum of changes in stretching, bending and torsion energies
DEelþHb¼ELRelþHb�ELelþHb�ERelþHb Sum of changes in electrostatic and hydrogen bonding ener-

gies
DEelþHbþE1,4¼ELRelþHbþE1,4�ELelþHbþE1,4 �ERelþHbþE1,4 Sum of changes in electrostatic, hydrogen bonding and 1,4

interaction energies
ELR(LL,RR,LR) Ligand-receptor complex energy
ELR(LR) Intermolecular ligand-receptor energy
ELR,vdW Van der Waals intermolecular ligand-receptor energy
ELR,el Electrostatic intermolecular ligand-receptor energy
ELR,Hb Hydrogen bonding intermolecular ligand-receptor energy
ELR,elþHb Sum of electrostatic and hydrogen bonding intermolecular

ligand-receptor energies
ELR,elþHbþvdW Sum of electrostatic, hydrogen bonding and van der Waals

intermolecular ligand-receptor energies
DEL(LL)¼ELR(LL)�EL(LL) Change in intramolecular ligand energy upon binding
ELR(LL) Intramolecular energy of bound ligand
DER(RR)¼ELR(RR)�ER(RR) Change in intramolecular receptor energy upon binding
ELR(RR) Intramolecular energy of bound receptor
ER(RR) Intramolecular energy of unbound receptor
ELR(LRM)¼ELRsolv Ligand-receptor complex solvation energy
DEL(LM)¼ELR(LM)�EL(LM) Change in ligand solvation energy upon binding
ELR(LM) Bound ligand solvation energy
EL(LM)¼ELsolv Unbound ligand solvation energy
DER(RM)¼ELR(RM)�ER(RM) Change in receptor solvation energy upon binding
ELR(RM) Bound receptor solvation energy
ER(RM)¼ERsolv Unbound receptor solvation energy
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one another. The descriptor usage in a GFA analysis as a
function of the number of crossovers was also monitored
as an indication of statistical significance [12, 25]. The mu-
tation probability over the crossover optimization cycle
was set at 10%. We tested a number of genetic operations
or crossovers of 50 000 to 100000. The models are scored
using Friedman�s LOF measure, which is a penalized least-
squares measure. The smoothing factor or parameter (d),
which is part of the LOF definition, is the only parameter
adjustable by the user [12], and it alters the balance be-
tween the number of independent variables (energy terms)
in the models and the reduction in LSE measure, and it
controls overfitting. The default value of smoothing factor
is 1.0. In this study, smoothing factor values of 1.0 to 0.1
were tested for generating the RD 3D-QSAR models.

Here, the ligands of the training set whose differences in
experimental and predicted activities exceeded 2.0 stan-
dard deviation, SD, from the mean of a model were con-
sidered as outliers.

Approaches to QSAR model validation, including y-
randomization or y-scrambling, robust internal validation
strategies such as multiple leave-many-out (LMO) cross-
validations, and external validation were applied in this
study whereas only validated QSAR models can offer a
meaningful mechanistic interpretation, especially in the
context of design or discovery of novel chemical agents
with desired properties [27 – 29].

The model internal validation by LMO procedure em-
ploys smaller training sets than LOO procedure and can
be repeated many more times due to possibility of larger
combinations in leaving many compounds out from the
training set. Here, LMO procedure was repeated up to ten
compounds were left out from the training set. Ideal ex-
pectation is high average q2. In other words, if a QSAR
model has a high average q2 in LMO validation, it can be
reasonably concluded that the obtained model is robust
[28].

The y-randomization test is a widely used technique to
ensure the robustness of a QSAR/QSPR model [27]. In
this test, the dependent-variable vector, y-vector, is ran-
domly shuffled and a new QSAR model is developed using
the original independent-variable matrix. The process is
repeated several times [28]. In the present study, that pro-
cedure was repeated ten times. It is expected that the re-
sulting QSAR models should generally have low r2 and
low LOO q2 values. Otherwise, if all QSAR models ob-
tained in the y-randomization test have relatively high r2

and LOO q2, it implies that an acceptable QSAR model
cannot be obtained for the given data set by the current
modeling method, probably due to a chance correlation or
structural redundancy of the training set.

2.3 External Validation

The six compounds of the test set were not included in the
building of the 3D-QSAR models, but they were used to

validate the best QSAR model constructed from the train-
ing set and to evaluate its prediction capacity. It is recom-
mended [29] that the external test set must contain at least
five compounds, representing the whole range of both
structure and activity of compounds included into the
training set. The predicted activity value (pMIC) of each
ligand in the test set was calculated using the equation of
the best model by substitution of the energy values or ther-
modynamic descriptors from MD simulations at 310 K,
which were selected as the most relevant to the biological
activity.

3 Results and Discussion

The top eight models (N¼31) selected by the WOLF 5.5
program, using a smoothing factor of 0.7; 10% probability
of mutation for each crossover; and 70 000 genetic opera-
tions or crossovers, presented two functions type (linear
and quadratic or simply second-degree polynomial terms)
suggesting differences in the mechanism of action of the
investigated hydrazides set. Five of eight models had one
outlier, the INHd41 compound, which is inactive. The
atypical behavior of INHd41 is probably because its higher
L-R complex energy value [ELR(LL,RR,LR)¼
�25799.13 kcal/mol] when compared to the other investi-
gated compounds (Table 3 – Supporting Information).
Then, a new analysis was performed (N¼30), using the su-
pra-mentioned conditions.

The top eight models had an increment in their statisti-
cal measures (see Table 4 – Supporting Information), indi-
cating better models. The r2 and q2 values ranged from
0.77 to 0.81, and from 0.61 to 0.68, respectively, whereas
the LOF and LSE values varied from 0.56 to 0.58, and
from 0.24 to 0.30, respectively. The number of energy de-
scriptors changed from 5 to 6 and the number of outliers
ranged from 0 to 2.

The cross-correlation matrix of residuals of fit between
pairs of models was computed and they were highly corre-
lated to one another (R¼0.84 to 1.00) (Table 5 – Support-
ing Information). Thus, the models were judged to be near-
ly the same model meaning that there is a single unique
model. Model 8 (Eq. 1) at 310 K was selected as the best
model because it did not have any outliers (see Table 5
and Figure 1).

Model 8

pMIC¼3.05�0.0077449 [ELR(LM)þ3.62]2

�0.000142 [ELelþHbþ118.13]2�0.003716 [ELbend�63.86]2

þ0.000008 [ELR,el�95.22]2�0.000001 [DEHb�719.26]2 (1)

N¼30, r2¼0.77, q2¼0.61, LOF¼0.58, LSE¼0.30, out-
liers¼0

Where: ELR(LM) is the bound ligand solvation energy;
ELelþHb is the sum of electrostatic and hydrogen bonding
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energies of unbound ligand; ELbend is the bending energy
of unbound ligand; ELR,el is the electrostatic intermolecular
ligand-receptor energy; and DEHb is the change in hydro-
gen bonding energy upon binding.

The model 8 is a nonlinear model, hence as high is the
value of sum or difference of the terms between [ ] as
more significant the (favorable or unfavorable) contribu-
tion to biological activity. It is noteworthy that this model
is composed of energy contributions of unbound ligand
[ELelþHb and ELbend], bound ligand or L-R complex [ELR

(LM), ELR,el], and changes of energy upon binding [DEHb],
which considers the both states, bound and unbound.
Moreover, the electrostatic intermolecular ligand-receptor
energy is the only favorable contribution (positive regres-
sion coefficient) to the biological activity (pMIC).

Those energy descriptors can be interpreted in terms of
specific L-R binding and they incorporate the dynamic
features of the chemical system where the molecular flexi-
bility is extensively embedded in performing a RD 3D-
QSAR analysis.

The DEHb term, for example, is the total change in hy-
drogen bonding of the ligand and the receptor upon L-R
binding. This term is a measure of how much hydrogen
bonding energy the isolated ligand and the isolated recep-
tor sacrifice to achieve the bound L-R state. The hydrogen
bonding contribution has also a polar or electronic charac-
ter and must be compensated, in some way, by the ELR,el

term, that is the electrostatic binding energy, according the
Equation 1 (the regression coefficients present opposite
signals).

The ELR (LM) descriptor corresponds to the bound li-
gand aqueous solvation energy and its related to the water
interactions between the ligand and the amino acid resi-
dues into the active site of the InhA enzyme. That term be-
comes more negative as the ligand becomes more soluble
in the L-R complex. Thus, there is an intermediate, but op-
timum, aqueous solvation energy with respect to minimiz-
ing the unfavorable contribution to the desirable activity.

The ELR,el and ELelþHb terms can be considered together
because they work against one another in the binding pro-
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Figure 1. Predicted or calculated (Ycal, white squares) and observed or experimental (Yobs, black losanges) activity values found for
the training set (N¼30), considering model 8.

Full Papers K. F. M. Pasqualoto and M. M. C. Ferreira

www.qcs.wiley-vch.de


cess (see Eq. 1). ELelþHb is the sum of electrostatic and hy-
drogen bonding energies of the isolated ligand. If an un-
bound ligand presents a very lower value of ELelþHb it will
have more difficulty to form the L-R complex, contribu-
ting more negatively to the inhibitory activity.

The bound state energy descriptors [ELR(LM), ELR,el]
and the energy term upon binding [DEHb] in model 8 can
be related to those grid cell occupancy descriptors
(GCODs) selected in the best RI 4D-QSAR model [10],
particularly the GCODs or GCs whose the interaction
pharmacophore elements (IPEs) were any atom group
types (GC2, GC3, GC4, and GC5). The GC2, GC3, GC4,
and GC5 were identified as the appropriate occupancies
by groups that reflect both hydrogen bond acceptor and
donor interactions considering the amino acid residues or/
and water molecules in the InhA active site [10]. More-
over, the GC4 was located on the nitrogen atom of the pyr-
idine ring (0.6 �) of the INH1/NAD adduct [10], and
could also be associated with the unbound energy term
[ELelþHb].

The ELbend descriptor is the bending energy of the iso-
lated ligand and how much bent is the ligand, higher is the
ELbend value and more negative is the contribution to the
activity. This energy term represents the intramolecular li-
gand interactions, which are undesirable and are responsi-
ble for impairing the L-R binding process [10].

A linear cross-correlation matrix of the energy descrip-
tors found for model 8 (Eq. 1) was built and none of them
were highly correlated to one another, since all pair corre-

lations of energy terms were lesser than 0.7 (R¼0.01 to
0.27) (see Table 6 – Supporting Information) meaning that
each of the energy terms provides independent informa-
tion to the optimal 3D-QSAR model.

A crossover versus descriptors usage plot reveals the
relative significance of the independent variables. The
more times a descriptor is used in generating new models,
the greater its relative role in explaining variance in the
biological activity[12, 26]. The results of a GFA optimiza-
tion analysis for predicting pMIC for the thermodynamic
descriptors calculated at 310 K are presented in Figure 2.
The energy terms ELR(LM), ELR,el and ELelþHb are more
often used in building RD 3D-QSAR models as the num-
ber of crossovers increases in the evolution of the GFA op-
timization.

The internal validation LMO procedure (internal pre-
diction power) and y-randomization technique (check for
chance of correlations) were carried out to verify the ro-
bustness of model 8. In Table 7 (Supporting Information)
are presented the obtained q2

LMO values when up to ten
compounds from the training set were left out (m is the
number of objects excluded in the internal validation pro-
cess which varied from 2 to 10).

Good QSAR models must have q2
LMO values closest to

the q2
LOO value of the selected best model. Furthermore,

the q2
LMO values must be closest to the average, hq2

LMOi,
and the oscillation range accepted is 0.1. All q2

LMO values
are closest to the q2

LOO value (0.61) (Table 7 – Supporting
Information). Also, the q2

LMO values oscillated from 0.01
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Figure 2. The descriptor usage of the energy terms is plotted as a function of the number of crossovers in the GFA analysis. The
thermodynamic descriptors in this figure are defined in Table 2 and were calculated at 310 K. Not all terms are shown but rather the
most often used terms in model evolution, particularly those that appeared in model 8. A smoothing factor of 0.7 was used.
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to 0.07 in comparison to the average value [hq2
LMOi¼0.60],

indicating a good internal predictability.
In Table 8 (Supporting Information) are shown the re-

sulting LOO q2 and r2 values when the y-vector was ran-
domly shuffled ten times and new ten QSAR models were
developed for the same data set, using the original inde-
pendent-variable matrix and the same conditions employed
in the building of the selected best QSAR model (model 8).
All QSAR models obtained in the y-randomization test
have low LOO q2 and r2 values, it implies that an acceptable
QSAR model can be obtained for the given data set by the
current modeling method, which is Model 8.

The pMIC value of each of the test set ligands (adducts)
was calculated using Equation 1, as described in Sec. 2.3.

Five of the six ligands of the test set had residuals whose
absolute values were lesser than or equal to the standard
deviation value from the mean of the model (Table 9 –
Supporting Information, and Figure 3), indicating that
model 8 has a good external predictive power (83.33%).
Additionally, a random sampling scheme similar to the
one used in bootstrapping was applied to truly assess the
external predictability. The data set (N¼36) was split ten
times (training set N¼30; test set N¼6) and the GFA-
PLS was running on the existing descriptor again. The pre-
diction power of test set remained as 83.33% (see Table 10
– Supporting Information).

The test set compound Idv136 did not have its activity
well predicted by model 8 probably because its behavior in
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Figure 3. External validation – predicted or calculated (Ycal, white squares) and observed or experimental (Yobs, black losanges) ac-
tivity values found for the test set (N¼6), considering Model 8.
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the bound state during the MD simulations at 310 K. The
L-R conformational ensemble profile of the complex
tb136q_I (tb136q refers to the adduct Idv136/NAD in com-
plex with InhA; I¼ inactive) presented very distinct ener-
gy contributions from the rest of the L-R complexes inves-
tigated (see Fig. 4). The total energy (Etotal) corresponds to
the summation of the following L-R complex energy
(ELR) contributions during the MD simulations at 310 K:
stretching energy (ELRstre), bending energy (ELRbend), tor-
sion energy (ELRtors), Lennard – Jones or 1,4 interactions
energy (ELRE1,4), intramolecular van der Waals energy
(ELRvdW), intramolecular electrostatic energy (ELRel),
and sum of intermolecular van der Waals and electrostatic
energies (ELRvdWþel).

A comparison of the partitioned energy contributions
values from all lowest energy minimum L-R conforma-
tions investigated (bound state) at 310 K was carried out.
The highest intramolecular van der Waals energy value
found for the tb136q_I complex seems to be the responsi-
ble for the significant increase in its total energy. Also,
that energy contribution in the bound state affects directly
the sum of intermolecular van der Waals and electrostatic
energies contribution.

4 Conclusions

Considering the conditions adopted in this study, the RD
3D-QSAR model at 310 K has good internal and external

predictability and can be taken into account in the binding
process of ligands to InhA. A larger set of compounds is
already being tested to verify the reliability of the model
generated. However, if the biological data were expressed
as binding constants and/or inhibition in vitro constants,
such as Ki or IC50, the findings could be even better, since
those constants provide a more effective estimative of the
binding free energies (DG).
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[3] D. A. Rozwarski, C. Vilchèza, M. Sugantino, R. Bittman,
J. C. Sacchettini, J. Biol. Chem. 1999, 274, 15582 – 15589.

[4] C. E. Barry, III, R. E. Lee, K. Mdluli, A. E. Sampson, B. G.
Schroeder, R. A. Slayden, Y. Yuan, Prog. Lipid Res. 1998,
37, 143 – 179.

QSAR Comb. Sci. 28, 2009, No. 11-12, 1455 – 1464 www.qcs.wiley-vch.de � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1463

Figure 4. Plot of total energy (Etot, kcal/mol) of L-R complexes versus time (ps) from MD simulations at 310 K. Etotal¼ELRstreþ
ELRbendþELRtorsþELRE1,4þELRvdWþELRelþELRvdWþel. The solvation and hydrogen bonding energies are not computed in this di-
agram.

Antituberculosis Derivatives

www.qcs.wiley-vch.de


[5] A. D. McCarthy, D. G. Hardie, Trends Biochem. 1984, 9,
60 – 63.

[6] K. Magnuson, S. Jackowski, C. O. Rock, J. E. Cronan Jr.,
Microbiol. Rev. 1993, 57, 522 – 542.

[7] K. F. M. Pasqualoto, E. I. Ferreira, Curr. Drug Targets 2001,
2, 427 – 437.

[8] P. J. Brenan, H. Nikaido, Ann. Rev. Biochem. 1995, 64, 29 –
63.

[9] D. A. Rozwarski, G. A. Grant, D. H. R. Barton, W. R. Ja-
cobs, Jr., J. C. Sacchettini, Science 1998, 279, 98 – 102.

[10] K. F. M. Pasqualoto, E. I. Ferreira, O. A. Santos-Filho, A. J.
Hopfinger, J. Med. Chem. 2004, 47, 3755 – 3764.

[11] A. J. Hopfinger, S. Wang, J. S. Tokarski, B. Jin, M. G. Albu-
querque, P. J. Madhav, C. Duraiswami, J. Am. Chem. Soc.
1997, 119, 10509 – 10524.

[12] D. Rogers, A. J. Hopfinger, J. Chem. Inf. Comput. Sci. 1994,
34, 854 – 866.

[13] W. G. Glen, W. J. Dunn, III, D. R. Scott, Tetrahedron Com-
put. Methodol. 1989, 2, 349 – 354.

[14] J. Bernstein, W. A. Lott, B. A. Steinberg, H. L. Yale, Am.
Rev. Tuberc. 1952, 65, 357 – 364.

[15] J. Bernstein, W. P. Jambor, W. A. Lott, F. Pansy, B. A. Stein-
berg, H. L. Yale, Am. Rev. Tuberc. 1953, 67, 354 – 365.

[16] J. Bernstein, W. P. Jambor, W. A. Lott, F. Pansy, B. A. Stein-
berg, H. L. Yale, Am. Rev. Tuberc. 1953, 67, 366 – 375.

[17] G. Klopman, D. Fercu, J. Jacob, Chem. Phys. 1996, 204,
181 – 193.

[18] HyperChem Program Release 7.51 for Windows; Hybercube,
Inc., Gainesville, FL 2002.

[19] D. Doherty, MOLSIM: Molecular Mechanics and Dynamics
Simulation Software, User�s Guide, Version 3.2, The
Chem21 Group Inc., Chicago, IL 1997.

[20] M. J. S. E. Dewar, G. Zoebisch, E. F. Healy, J. J. P. Stewart,
J. Am. Chem. Soc. 1985, 107, 3902 – 3909.

[21] S. J. Weiner, P. A. Kollman, D. T. Nguyen, D. A. Case, J.
Comput. Chem. 1986, 7, 230 – 252.

[22] A. J. Hopfinger. Conformational Properties of Macromole-
cules, Academic Press, New York 1973.

[23] H. J. C. Berendsen, J. P. M. Postman, W. F. van Gunsteren,
A. di Nola, J. R. Haak, J. Chem. Phys. 1984, 81, 3684 – 3690.

[24] W. F. van Gunsteren, H. J. C. Berendsen, Angew. Chem., Int.
Ed. Engl. 1990, 29, 992 – 1023.

[25] J. S. Tokarski, A. J. Hopfinger, J. Chem. Inf. Comput. Sci.
1997, 37, 792 – 811.

[26] D. Rogers, WOLF Reference Manual Version 5.5, The
Chem21 Group Inc., Chicago, IL 1994.

[27] S. Wold, L. Eriksson, in Chemometric Methods in Molecular
Design (Ed: H. van de Waterbeemd), VCH, Weinheim
1995, 309 – 318.

[28] A. Tropsha, P. Gramatica, V. K. Gombar, QSAR Comb. Sci.
2003, 22, 69 – 77.

[29] A. Golbraikh, A. Tropsha, J. Mol. Graph. Mod. 2002, 20,
269 – 276.

1464 � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.qcs.wiley-vch.de QSAR Comb. Sci. 28, 2009, No. 11-12, 1455 – 1464

Full Papers K. F. M. Pasqualoto and M. M. C. Ferreira

www.qcs.wiley-vch.de

