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It is well known that no single experimental condition can be found under which the extraction of all the volatile
compounds in a gas chromatographic analysis of roasted coffee beans by headspace-solid phase microextraction
(HS-SPME) ismaximized. This is due to the largenumberofpeaks recorded. In thiswork, the scoresvectorof thefirst
principal component obtained from PCA on chromatographic peak areas was used as the response to find the
optimal conditions for simultaneous optimization of coffee volatiles extraction via response surface methodology
(RSM). This strategy consists in compressing several highly correlatedpeak areas into a single response variable for a
central composite design (CCD). RSMwasused to identify an optimal factor combination that reflects a compromise
between the partially conflicting behavior of the volatiles groups. This simultaneous optimization approach was
comparedwith thedesirability functionmethod. Theversatility of thePCA–RSMmethodologyallows it to beused in
other chromatographic applications, resulting in an interpretable procedure to solve new analytical problems.
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1. Introduction

The aromaprofile is oneof themost typical features of foodproducts,
in terms of both organoleptic quality and authenticity [1]. Due to the
high number of volatile components, the aroma profile represents a
“fingerprint” of a product [2]. Aroma compounds are abundantly
present in roasted coffee as complex mixtures of volatile components
with different functional groups. That is the main reason why roasted
coffee volatiles are frequently described in different studies of analytical
methods and new extraction materials [3–9].

Solid phase microextraction (SPME) has been shown to be an
excellent sampling method, allowing simultaneous extraction and
concentration of analytes from sample matrices. This technique makes
use of a fused silica optical fiber coated with a thin polymer layer to
extract the analytes from a liquid (solution), from the headspace (HS)
above a liquid or solid, or from a gaseous phase [10]. The advantages of
SPME can be completely and easily exploited in the headspace mode.
The enrichment of the analytes is unique in comparison to other HS
sample preparation methods [11].

Finding the optimal experimental conditions in SPME is an important
task, since the kinetics and thermodynamics of extraction depend on
several experimental conditions such as fiber coating, sample concen-
tration, temperature, time and ionic strength, among others [12–14].
From a univariate point of view, certain advances have been made
regarding the study of HS-SPME experimental conditions for
extraction of volatiles from foods [15–17]. However, with respect to
analyses of coffee volatiles, certain experimental variables differ from
one paper to another [18–22].

Although several experimental design investigations usingHS-SPME
can be found in the literature [13,23–27], examples of optimization to
improve the extraction of coffee volatiles are scarce and do not employ
experimental design [15,28].

Interest in finding the optimal experimental conditions for maxi-
mizing more than one peak area is frequent in studies employing
chromatographic techniques. However, it is rather difficult to analyze
the results obtained from response surface methodologies when several
dependent variables (responses)of interest are involved.A largenumber
of the volatiles from roasted coffees appear in larger or smaller amounts
in the headspace, depending on the roasting degree and quality of the
beans. Unfortunately, the experimental conditions that maximize the
extraction of high molar mass volatiles might not be even close to those
which optimize the extraction of low molar mass volatiles. In such
situations, an extraction optimization for each volatile becomes
laborious, complex and not representative for all of them. There are
different approaches for multiple response optimization. Frequently,
they involve the optimization of one response at a time subject to
constraints on theremainingones, and thenfindinga set of experimental
conditions that in some sense optimizes all responses or, at least, keeps
them within desirable ranges [29].

A relatively straightforward approach for optimizing several
responses that works well when there are only a few design variables is
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to overlay the contour plots for each response [29]. Nevertheless, when
there are more than three response variables, overlaying contour plots
becomes awkward. Another solution is to formulate and solve a
constrained optimization problem which can be accomplished by
numerical techniques like nonlinear programming methods [30,31].
Another nonlinear strategy is that based on a neurogenetic approach
[13,27].

A useful approach for the simultaneous optimization of several
response variables was introduced by Harrington [32] and called
the desirability function. This approach was later improved and
popularized by Derringer and Suich [33]. In essence, this method
transforms a multivariate optimization problem into a univariate one,
where all the responses are combined into one measurement, i.e.,
only one representative response. Among the advantages of using the
desirability function, are that responses with different scalings can be
compared between themselves, the transformation of different
responses into one measurement is rather simple and quick and,
lastly, both qualitative and quantitative responses can be taken into
account [34].

Other approaches to multiple response analysis found in the
literature are dual responses [35], Khuri–Colon distance [36] and
those based on the square error loss [37–39], among others.

In this work a quite practical and effective methodology based on
PCA was applied as strategy for tackling multiple response optimiza-
tions. This procedure was firstly presented by Bratchell [40] and
latter demonstrated in five different examples by Carlson et al. [41].
Sandstrom et al. [42] and Ellekjaer et al. [43] have published
interesting papers using the same approach. Nowadays, the majority
of applications are found in Taguchi design [44–48]. However, the
application of this strategy has not yet been used in optimization of
experimental conditions for chromatographic analysis, which is
explored in this work. To the best of our knowledge, there is no
work in literature using RSM and PCA as an optimizationmethodology
for solid phase microextraction operational conditions for coffee
volatiles determination.

The aim of this work is to apply a strategy based on central
composite design (CCD) and principal component analysis (PCA) to
find the operational conditions (extraction temperature, extraction
time, and equilibrium time) of the hyphenatedmethod HS-SPME–GC-
FID that simultaneously optimizes the amounts of volatile compounds
of both low and high molar masses extracted from roasted Arabica
coffee. For a comparative analysis, the method of desirability function
was also applied.
Fig. 1. Scheme showing the calculations used for simultaneous multiple response optimizat
the scores and loadings matrices.
1.1. Theoretical explanation of multiple response optimization using PCA

Usual chromatographic analyses of natural products, without many
clean-up steps, provide chromatograms with several peaks. If some or all
of the peak areas are relatively highly correlated, then the original set of
correlated responses can be reduced to one or a very few uncorrelated
PCA components [44]. The strategy for multiple response analysis
employed in this work takes advantage of minimizing the complex
analysis of several dependent variables using PCA coupled with
experimental design.

The method is based on two principal considerations, as follows.

a) Testing the correlations between relative peak areas, i.e., the raw
responses in the experimental design: the Pearson correlation
coefficient (r) was used for assessing the degree of linear association
between each two variables (peak area vectors) [49]. If peak areas
exhibit reasonable mutual correlation, |r|N0.6, it can be considered
that the corresponding peak responses are related to changes in the
system.

b) Applying principal component analysis (PCA) to eliminate redun-
dant informationwhen peak areas are correlated: themost frequent
application of this method occurs in situations where the variables
are correlated and present redundancies that can be removed
together with small variabilities. The aim of PCA is to express the
significant information contained in the original variables by a small
set of new variables, the principal components [50–53].

Once correlation among themultiple responses is detected, the use
of PCA can be recommended and Y is replaced by the scores of the first
few principal components. In this work, only the first component was
used (one column in Fig. 1). Thus, the statistical calculation from
experimental design was performed using only the scores of the first
principal component as the dependent variable. However, it is very
important to verify the variance explained by the first principal
component and the correlation between the scores from this
component and each original response variable (yi) used in PCA. If
the explained variance and the correlations are satisfactory, the
multiple response analysis will be significant and reliable.

1.2. Desirability function

In this methodology [33], the desirable combination of k response
variables, each of which depends upon a set of p design variables, is
obtained through a desirability function. This function transforms
ion using principal component analysis and response surface methodology. T and P are



Fig. 2. Correlation map of peak areas.
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each estimated response variable ŷi, calculated by the fitted response
surface associated with the CCD experimental design used in this
work, into a desirability value di, using the following set of equations:

di =

0 ŷi≤yimin

ŷi−yimin
yimax−yimin

� �
yiminbŷibyimax

1 ŷi≥yimax

; for i = 1;2;…; k

8>>><
>>>:

ð1Þ

where the values yimin and yimax are the minimum and maximum
acceptable value of ŷi, respectively. The values of di vary in the interval
0≤di≤1, increasing as the desirability of the corresponding response
increases.

The individual desirabilities are then combined using the geomet-
ric mean (Eq. (2)) to give an overall desirability, D,

D = d1 � d2 � ⋯� dkð Þ
1

k= ð2Þ

which increases as the balance of the properties becomes more
favorable. Any existing univariate search technique can be used to
optimize D over the independent variable domain (p design variables),
resulting in the desirability of the combined response levels.

2. Materials and methods

2.1. Coffee sample

One roasted Arabica coffee sample was used in the chromato-
graphic analyses.

2.2. GC-FID parameters

The analyses were performed on a G-6850 GC-FID system (Agilent,
Wilmington,USA)fittedwithaHP-5capillary column(30 m×0.25 mm×
0.25 μm). Helium (1 mLmin−1) was the carrier gas. The oven temper-
ature was programmed as follows: 40 °C→5 °C/min→150 °C→30 °C/
min→260 °C. The injection port was equipped with a 0.75 mm i.d. liner
and the injector was maintained at 220 °C in the splitless mode. Under
these conditions, no sample carry-over was observed on blank runs
conducted between extractions.

2.3. General SPME procedure of sampling and injection

The volatiles extraction was carried out using the HS-SPME
technique. In an earlier work [54], different types of SPME fibers were
evaluated, taking into consideration polarities, fiber coatings and
thickness, with the purpose of identifying which commercial fiber is
most suitable for extracting coffee volatiles. Polydimethylsiloxane/
divinylbenzene (PDMS/DVB) fibers with 65 μm thickness were chosen.
This fiber and the manual holder were purchased from Supelco
(Bellefonte, USA). All assays were carried out using 250 mg of ground
Arabica roasted coffee and 2 mL of saturated aqueous sodium chloride
solution transferred to a septum-sealed glass sample vial (5 mL). The
experimental conditions of the assays were those indicated by the
experimental design.

2.4. SPME variables

In development and application of the HS-SPME method many
aspects (conditions) have to be considered due to various physico-
chemical properties of the compounds that will be extracted. The salt
additives, pH, extraction temperatures, the sample-to-headspace ratio
and the time of incubation, for example, are important parameters for
achieving the best extraction efficiency [10,14]. However, some of
these parameters were not taken into account when designing the
present experiments. It is known from the literature that an increase
of the ionic strength by adding salt is more effective for the extraction
of analytes onto the fiber, because it minimizes the solubility of less
polar compounds by forcing them to pass to the vapor phase (salting-
out effect) [10,14]. Besides, previous optimization strategies using this
variable have shown that super-saturation was the best condi-
tion [13,27]. Another variable not considered in this work was the
vial size because, usually, the vial is filled to half of its capacity [14,16].
Analyte extraction is improved when the headspace is minimized;
however the minimum volume of headspace is limited by the length
of the fiber. The pH variable was not included either, because it would
be difficult to find an optimum pH value for simultaneous extraction
of several volatile compounds with different acid–base properties.

Systematic optimization procedures were carried out by selecting
an objective function, which includes the most important factors
affecting the microextraction process and investigating the relation-
ship between responses and factors by RSM. Three experimental
factors were taken into account in this work: bath temperature (T),
pre-equilibrium time (PET) and extraction time (Ext).

2.5. Response surface methodology

Once the instrumental conditions that ensured reasonable
responses were established, the optimization procedure was applied
in order to find the best experimental conditions for an optimum
signal response.

Finding the optimum experimental conditions is more efficient
and precise when multivariate statistical techniques are employed
since all variables (factors) are simultaneously considered, accompa-
nied with significant experimental savings [55–57]. To perform this
task, experimental designs such as response surface methodology are
the procedures employed in the majority of optimization studies [23–
25,58]. Experimental designs are helpful in determining the effects of
individual variables (factors) and interaction among them over the
significant responses [25,55].

A central composite design (CCD) with three independent variables
was the protocol chosen for carrying out the RSM. The design consisted
of a total of 18 experiments: 8 in the factorial points, 6 in the axial points
and 4 central points. Other alternatives to the standard CCD could be, for
example, the D-optimal, dodecahedron+1 and dodecahedron+2
designs performed with 10, 13 and 14 experiments, respectively [59].
The factorial point levels of independent variables investigated were:
bath temperature (T: 30–50 °C), pre-equilibrium time (PET: 5–15 min),
extraction time (Ext: 10–20 min). These ranges were selected based on
prior knowledge about the system under study. All experiments were
performed in random order to minimize the effects of uncontrolled



Table 1
Percent variance described by PCA model in the different subsets.

PC Subset A Subset B

% Variance captured % Variance captured

Individual Total Individual Total

1 64.51 64.51 81.98 81.98
2 19.67 84.18 8.15 90.13
3 6.82 91.00 6.59 96.72
4 3.80 94.80 1.90 98.62
5 1.63 96.43 0.51 99.12
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factors that may introduce a bias into the measurements. For the
statistical analysis, the model coefficients were calculated by multiple
linear regression and validated by the analysis of variance (ANOVA).

2.6. Software

The data analysis was carried out using Matlab 6.5 (The Math-
Works, Co., Natick, MA, USA), Microsoft Excel™ 2003 (The Microsoft,
Co, USA) and Statistica 6.0 (The StatSoft, Inc., Tulsa, OK, USA). The
algorithms for PCA were made in-house and the experimental design
calculations were performed using the spreadsheets presented by
Teófilo and Ferreira [55,60]. The desirability calculation was carried
out using the software Statistica 6.0.

3. Results and discussions

The initial responses, considered in the statistical treatment and
used for building the response surfaces, consisted of the relative peak
areas obtained from chromatographic runs as defined by the CCD. A
total of 57 peaks covering a wide range of molar masses and
distributed in 42 “regions”, were selected as initial representative
responses. Each “region”was represented by either a single peak or by
Fig. 3. Correlations between subset peak area sums and the PC1 scores. Correlations between (A
subset B and PC1 scores from subset B; (C) summed peak areas of subset A and PC1 scores fro
a group of overlapped peaks. This organization was necessary because
the chromatographic separation of adjacent peaks in certain regions
was not effective. The area of an individual peak or a group of peaks
(region) will be referred as peak area in this work.

The use of these 42 peak areas as responses makes the statistical
analysis rather complicated when no treatment with simultaneous
responses is used. So,methodologies formultiple responses are necessary
in order to make the complex analysis feasible. Thus, the multiple
response approach using PCA and desirability function were applied and
compared to attain the optimal operational chromatographic conditions.

3.1. RSM–PCA

Since the PCAmethod groups correlated variables, it is expected that
peaks with similar variations, as a function of changes in the
experimental conditions of the system, would be correlated. This way,
when the correlation matrix of the peak areas was calculated and
presented graphically in correlogram format (Fig. 2), a direct correlation
among peaks in two quadrants (2nd and 4th as indicated in Fig. 2) could
beobserved. Correlations in thesecondquadrant, designated as subsetA,
account for 24 peaks (22 regions), distributed from the beginning of the
chromatographic run up to 8 min. Correlations in the fourth quadrant,
designated as subset B, correspond to 33 peaks (20 regions) with
retention times between 8 and 19 min.

Correlations between peaks areas from subsets A and B are mostly
negative (1st and 3rd quadrants in Fig. 2), indicating that the responses
of subset A bring different chemical information from those observed in
subset B. Hence, the multiple response analyses using PCA were
performed separately for each subset, in order to obtain higher
explained variance in the first component for both subsets.

The first PCA components obtained using auto-scaled data from
subsets A and B explained 64.51 and 81.98% of the data variance,
respectively (Table 1). These components showed satisfactory correla-
tionwith all peakareas in their respective subsets. Themeancorrelations
) summed peak areas of subsetA and PC1 scores from subsetA; (B) summed peak areas of
m subset B; (D) summed and peak areas of subset B and PC1 scores from subset A.



Table 2
Central composite design for three variables and PC1 scores responses.

Runs x1 x2 x3 Resposnses

Subset A Subset B

Factorial points 18 −1 −1 −1 5.66 −4.888
1 1 −1 −1 −5.46 0.668
9 −1 1 −1 9.28 −5.525

13 1 1 −1 −2.12 2.026
16 −1 −1 1 0.61 −1.693
4 1 −1 1 −2.40 6.293
5 −1 1 1 1.14 −1.278

17 1 1 1 −3.78 6.795
Centre points 3 0 0 0 0.99 −0.076

7 0 0 0 −3.37 −0.720
11 0 0 0 −1.57 0.372
15 0 0 0 0.57 0.305

Axial points
α=81/4≈1.682

2 −1.682 0 0 3.97 −7.605
6 1.682 0 0 −5.64 6.837

14 0 −1.682 0 −0.13 −0.419
10 0 1.682 0 −0.09 −0.387
8 0 0 −1.682 2.10 −3.785

12 0 0 1.682 0.24 3.082

Experimental domain

Variables −1.682 −1 0 1 1.682
x1: Temperature/°C 23 30 40 50 57
x2: Pre-equilibrium temperature/ °C 1.5 5 10 15 18
x3: Extraction time/min 6.5 10 15 20 23

Table 4
ANOVA for the two linear models built.

Variation source SS df MS F p

Subset A
Regression 212.94 6 35.49 13.78 0.0002
Residual 28.33 11 2.58

Lack-of-fit 13.23 8 1.65 0.33 0.9074
Pure error 15.08 3 5.03

Total SS 241.27 17
R 0.99

Subset B
Regression 274.30 6 45.72 113.48 3.03×10−9

Residual 4.43 11 0.40
Lack-of-fit 3.84 8 0.48 1.49 0.41
Pure error 0.96 3 0.32
Total SS 278.73 17
R 0.99

SS, sum of squares; df, degree of freedom; MS, mean squares.
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(±standard deviation) between the peak areas from subset A and the
respective PC1 scores was 0.80 (±0.10) and for subset B the mean
correlation was 0.90 (±0.05).

Another interesting trend noticed is that the summed peak area of
both subsets is highly positively correlated to the respective PC1
scores, as can be seen in Fig. 3A and B. On the other hand, a negative
correlation is observed between the sum of peak areas from subsets A
and B and the PC1 scores from subsets B and A, respectively (Fig. 3C
and D). Reasonable explanation for this behavior may lie in the fact
that highly correlated peak areas, when compressed by PCA into
single latent information, will be exploited similarly in integration
where the latent information is basically repeated. In this sense, the
sum of peak areas could be also used for multiple response
optimizations, but the PCA is preferred since redundant information
is removed, the signal/noise ratio is increased, and therefore the
quality of the models are improved [41].

Based on the above discussion and the correlations presented in
Fig. 3, the use of the first PC scores of each subset as the representative
response (Table 2) in the RSM is well supported.

After obtaining the PC scores for subsets A and B, the central
composite design was used to perform the optimization. However, it
was verified that quadratic coefficients were not significant and thus,
a linear model was fitted using the parsimony principle.
Table 3
Statistical analysis of the model for the subsets A and B. The coefficients are coded.

Subset A Subset B

Coefficients Error t (3) p Coefficients Error t (3) p

Intercept 0 0.48 1×10−15 1 1.1×10−15 0.12 9×10−15 1
T −3.41⁎ 0.55 6.24 0.008 3.91⁎ 0.14 28.88 9.1×10−5

PET 0.45 0.55 0.83 0.468 0.12 0.14 0.91 0.4285
Ext −1.09 0.55 2.00 0.139 2.15⁎ 0.14 15.88 0.0005
T×PET −0.27 0.71 0.38 0.728 0.26 0.18 1.47 0.2381
T×Ext 1.82 0.71 2.55 0.084 0.37 0.18 2.08 0.1287
PET×Ext −0.98 0.71 1.37 0.265 0.02 0.18 0.14 0.8982

⁎ Significant coefficients using significance level of 0.05 and three degrees of freedom
for the t test using the pure error.
Table 3 presents the model coefficients for the two linear models
built. It can be noticed for subset A that only the linear effect of
temperature (T) was significant and negative, indicating that at lower
temperatures a larger amount of volatiles from subsetAwas observed.
On the other hand, for subset B, the linear effect of the temperature is
positive, suggesting that the amount of volatiles for this subset
increases with temperature elevation. Another significant effect for
subset B is the linear effect of the extraction time (positive), indicating
that the longer the extraction time, the greater is the extracted
amount of volatiles from this subset. Consequently, it can be noted
Fig. 4. Response surfaces for subsets A (I) and B (II). Pre-equilibrium time was fixed at
10 min.
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from Table 3 that the negative correlation between the two scores is
confirmed by the linear effect of temperature in each case.

Analysis of variance (ANOVA) (Table 4) indicates that both
regression models are significant (pb0.05) and with non significant
lack-of-fit (pN0.05). These results suggest that the fitted response
model can be applied to determine the optimum volatile extraction
conditions.

The application of response surface methodology to the PC1 scores
of the two subsets A and B resulted in two surfaces I and II,
respectively (Fig. 4). They present opposite tendencies: lower bath
temperature in I and higher bath temperature with longer extraction
time in II, indicating that it is possible to shift the sorption equilibrium
of the system for better extraction of the compounds.

The main physical characteristic of separation in gas chromatog-
raphy is basically the volatilization of the molecules. So, it is expected
that subset A is composed essentially of compounds with low molar
mass, compared with subset B that is formed by somewhat heavier,
less volatile compounds.

At lower temperatures the sorptionequilibriumof the system is such
that heavier compounds appear in lesser amounts in the headspace
compared to the concentration of the lightest compounds and the
extraction of the latter becomes more efficient (surface I in Fig. 5). On
the other hand, the surface response II in Fig. 4 indicates that higher
temperatures are required to drive the sorption equilibrium in a way to
enhance the concentration of heavier compounds in the headspace
compared to the lighter compounds. The results might suggest that for
temperatures higher than those used in the defined interval of the CCD,
the extraction of the heavier compounds could be enhanced. However,
higher temperatures are not feasible since the compounds do not stay
adsorbedonto thefiber and tend to return to theheadspace. Therefore, it
is not advisable to perform the extraction at even higher temperatures.
Fig. 5. Typical chromatograms showing enlarged regions corresponding to subset A (I), and
dash–dot line (T=40 °C, Ext=23 min).
According to surface II, efficient extraction of the heavier compounds
can be achieved without raising the temperature, but by extending the
extraction time (also a significant effect). This strategy has been also
found in the literature [10,16].

The equilibrium of extracted compounds using a PDMS/DVB fiber can
be described by the Langmuir adsorption isotherm. According to this
isotherm, the PDMS/DVB fiber possesses a limited number of active sites
(pores) at the surface, so that the amount of extracted analytes would be
directly proportional to the number of these sites. Therefore, the
relationship between the amount of extracted material and its concen-
tration in the sample is fairly linear, except for high concentrations.

Since sorption is a competitive process, molecules with lower
affinity for the SPME fiber are substituted by those of higher affinity.
At the beginning, lighter molecules (more volatile) quickly adhere to
the fiber surface but then, by increasing the extraction time, they are
gradually substituted by heavier molecules with better affinity.

In this study, the 42 regions (corresponding to 57 peak areas) were
considered in two opposite optimized conditions. But unfortunately, in
a real extraction only one condition has to be selected in order to
extract efficiently all compounds from subsets A and B simultaneously.
Investigating surfaces Iand II, and the chromatographicprofiles in Fig. 5, it
canbe seen that, in general, the amount of lighter compounds extracted is
higher, compared with that of the heavier compounds that appear at the
end of the chromatogram. In this way, temperature values tending to
better extraction of the heavier volatile compounds, together with longer
extraction times could help in the extraction of themajority of the volatile
coffee compounds. The concentration of the lighter compounds would
decrease slightly, however,with a significant improvement of the heavier
compounds. Based on the above discussion, an intermediate set of
conditionswas selected, namely temperatureof 40 °Candextraction time
of 23 min, as being appropriate for extraction of all volatiles.
subset B (II). Solid line (T=23 °C, Ext=15 min); dashed line (T=57 °C, Ext=15 min),



Fig. 6. Response surfaces corresponding to the desirability function when the factors temperature, pre-equilibrium time and extraction timewere optimized by analyzing 60 responses
simultaneously.
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Fig. 5 shows chromatogramsobtainedusing the optimal experimental
conditions indicated by the two response surfaces (temperature=23 °C
and extraction time=15 min for surface I; temperature=57 °C
and extraction time=15 min for surface II) and a chromatogram
obtained by the suggested optimum experimental condition (T=40 °C,
Ext=23min). The chromatograms show that low temperatures were
more effective in extracting higher amounts of light compounds, as
expected. However, the chromatogram obtained from optimum condi-
tions indicated by surface II, shows that the extraction of heavy
compounds was more intense at higher temperatures. The last
chromatogram using the suggested condition shows a balance, leading
to satisfactory extraction of lighter compounds and a greater extraction of
the heavier compounds.
3.2. Desirability function

Using the desirability function approach, the minimum acceptable
peak areawas set as di=0 (value totally undesirable), themedian value
was considered as di=0.5 and the maximum value as di=1 (totally
desirable value). These criteria were applied for all 42 peak areas. The
individual values of di were obtained and then combined into a global
function D that was maximized choosing the best conditions of the
designed variables.

Fig. 6 shows the contour plots of D for two experimental
parameters with the other held at its optimum. According to the
response surfaces in Fig. 6 temperature values around 40 °C,
equilibrium time ranging from 8 to 10 min and extraction time
extending up to 20 min are good experimental conditions for an
efficient extraction of all the volatiles regarding the chromatographic
peaks selected. These conditions are in good agreement with those
suggested by PCA–RSM methodology.

These results indicate that simultaneous optimization of several
responses has been efficiently accomplished by both methods.
However, the desirability function, although objective and efficient
to find the optimal conditions frommultiple responses, is not as easily
interpretable as the PCA–RMS approach, from the chemical point of
view. Besides that, in PCA–RMS one can choose the region of the
surface that could be used in the extraction of specific desired
compounds.
4. Conclusions

The use of PCA for data compression prior to building the surface
responses was of great importance to define the optimum chromato-
graphic conditions for simultaneous extraction of volatile compounds of
low and high molar masses from roasted coffee beans. With this
strategy, multiple responses could be simultaneously handled without
the necessity to use complex methodologies. The high correlation
among the chromatographic peak areas, independent of the experi-
mental conditions,makes possible the use of the first component of PCA
as the analytical response.

The response surface analyses have indicated the importance of
temperature for extraction of different kinds of volatile compounds.
Due to the sorption equilibrium of the system, extraction time was
another important parameter for extraction of heavier compounds.
Similar optimum experimental conditions were obtained by PCA–
RSM and the desirability function.
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