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Is your QSAR/QSPR descriptor real or trash?
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The sign change problem in quantitative structure
relationship (QSPR) and related studies is the con
J. Chemom
–activity relationship (QSAR), quantitative structure–property
troversy related to the signs of correlation coefficients and

regression coefficients of a descriptor in univariate and multivariate regressions, before and after the data split.
Among 50 investigated regression models with 227 descriptors extracted from the literature, the sign change
problem was shown to have a very high frequency, according to four new criteria proposed in this work for its
assessment. The sign change problem can be substantially reduced and even eliminated for a given dataset by
statistically based variable selection and by checking for the sign change problem before model validation and
interpretation. Knowing the fundamentals of statistics related to the sign change problem, its identification and
understanding aid in finding effective means to remedy regression models with this deficiency. Copyright � 2010
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1. INTRODUCTION

Multivariate regression models have found fertile ground in
chemistry and related sciences, especially within the areas of
quantitative structure–activity relationship (QSAR) and quantitative
structure–property relationship (QSPR). As recently noticed by
Dearden et al. [1], many thousands of works in these areas have
been developed, and several publications dealing with guidelines
for obtaining statistically correct and satisfactory regression models
have been published, as for example the OECD (Organisation for
Economic and Cooperation and Development) principles [2].
However, there are still numerous models incorporating various
errors, which are classified into 21 types by Dearden et al. [1].
Errors in QSAR/QSPR development and use appear and pro-

pagate as a consequence of failures to perform certain operations
during regression analysis. These failures become rather apparent
when basic principles of linear regression analysis are discussed,
such as those one can find in the basic statistical literature [3–11]
and QSAR/QSPR [1,2,12–20] publications. Twelve concepts rela-
ted to various types of failures will be discussed in this work, using
the following nomenclature.
A single univariate regression for n samples (objects) is a

quantitative relationship of the observed dependent variable y
with the independent variable x (descriptor),

ŷ ¼ aþ bx (1)

where ŷ is the predicted property, a is the intercept and b
is the regression coefficient of x. When there are m indepen-
dent variables, an analogous expression for each general xj
variable is

ŷ ¼ aj þ bjxj j ¼ 1; 2; . . .m (2)

while the contribution of all variables treated simultaneously
is expressed via a general Multiple Linear Regression (MLR) or
etrics 2010; 24: 681–693 Copyright � 20
Partial Least Squares regression (PLS) equation with a as the
intercept and bj as the regression coefficients of xj:

ŷ ¼ aþ b1x1 þ b2x2 þ . . .þ bmxm (3)

Researcher’s key role in regression analysis: Typical problems
found here are lack of sufficient statistical, chemical or QSAR/
QSPR expertise; insufficient human interference into the
regression analysis by relying too much on automatic and
black-box procedures and consideration of graphical means
(variable distribution plots, bivariate distribution plots, residuals
plots, etc.) as not necessary.
Randomness: This is an intrinsic characteristic of linear

regression, present in various ways. First, the samples (subs-
tances) should be randomly distributed in the space of features
xj and y for the studied class or classes of compounds, which
may be a practical problem when having a small set of similar
samples. Second, samples in the data matrix should be ordered
so that any systematic variation in variables in the dataset or
subsets is avoided, which may be achieved by randomization
of the original matrix. Third, data split, especially for external
validation, must be based to a certain extent on randomness.
Fourth, residuals y� ŷ must be randomly distributed with res-
pect to any xj, y and ŷ.
Diversity: Molecular diversity of the dataset accounts for the

variation in 2D and 3D structures, and it should provide
10 John Wiley & Sons, Ltd.
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significant variations in all variables, where each variable may be
characterized by a certain type of distribution. The number of
samples is usually crucial to enable molecular diversity,
satisfactory statistical significance achieved in various tests and
effective data split. Finally, diversity of descriptors in terms of their
nature (steric, electronic, hydrogen bonding, lipophilic, etc.) may
aid in describing the complex nature of molecular behavior in
QSAR/QSPR.
Normality, independence and linearity conditions: All

variables xj and y, ŷ, and residuals have normal or quasi-normal
distribution in the theory of regression analysis. Furthermore,
regression coefficients and their errors, correlation coefficients
and other statistical parameters also have normal or quasi-
normal distribution when several closely related models are
compared, as for example in resampling-based model vali-
dations. Independence is another important cornerstone of
regression analysis. For example, residuals must be independent
of variables xj and ŷ. The so-called independent variables xj
are considered mutually independent, i.e. one variable does
not vary systematically with another and their joint distribution
may be other than normal or quasi-normal. Linearity is an
additional condition for linear regression, closely related to
normality and independence. In this sense, y linearly depends
on the independent variables, ŷ is a linear function of xj and
regression coefficients are estimated by a linear method.
Furthermore, any two quantities (variables xj, y, ŷ, y� ŷ
and statistical parameters) show bivariate normal or quasi-
normal distribution in scatterplots, visible as data points
situated on concentric ellipses whose major axes lay on the
regression line. This line shows the degree and direction of
systematic linear variation of one variable with the change in the
other, known as correlation. Independence for linear regression
means, therefore, that there is no correlation. Normality,
independence and linearity concepts, although seeming too
banal to be mentioned, are not so rarely misunderstood,
misinterpreted and even ignored. Real datasets bring certain
deviations from basic assumptions of linear regression. At first,
when dealing with a small number of samples, normality
conditions for individual and joint xj–y distributions are not
achieved satisfactorily, while nonlinear relationships between
variables and multicollinearity (dependence of a variable on
other variables or their linear combinations) are not easily
visible. Some types of errors related to normality, independence
and linearity still persist in QSAR/QSPR: statistical significance
for xj–y relations is not checked satisfactorily or not at all by
some standard tests (correlation analysis, t-test, F-test etc.), so
statistically irrelevant variables are not dropped; a linear model
is not tested for eventual non-linearity; multicollinearity is not
inspected satisfactorily to decide which regression method to
use (MLR or PLS, for example), so that a redundant dataset may
be used in MLR. Such omissions lead to misleading results,
unreliable regression coefficients and statistical parameters that
underestimate or overestimate the real relationships between xj
and y. Regression coefficients (Equations (1)–(3)) may be
sensitive to inclusion or exclusion of samples, especially when
small datasets are involved. They can be unstable with respect
to inclusion or exclusion of variables because of relationships
between descriptors, due to which each regression coefficient is
determined by all xj variables. Correlation between variables in
QSAR/QSPR is usually quantified by the Pearson correlation
coefficient, so that for x and y it is defined as the standardized
covariance or the scalar product of the respective autoscaled
wileyonlinelibrary.com/journal/cem Copyright � 2010 John
variables (scaled to unit variance):

rxy ¼
x� 1 � xð ÞT y� 1 � yð Þ

n� 1ð Þ ffiffiffiffiffiffiffiffiffiffi
sxsy

p ;

s2
x ¼

x� 1 � xð ÞT x� 1 � xð Þ
n� 1ð Þ and

s2
y ¼

y� 1 � yð ÞT y� 1 � yð Þ
n� 1ð Þ

(4)

where 1 is the vector of size (n� 1) containing ones, T means
transposition of a vector and sx and sy are standard deviations
of x and y, respectively. When autoscaled variables are used, x
and y are equal to zero and sx and sy are equal to one, and
consequently, rxy is equal to the coefficient b in univariate
regression (a¼ 0, Equations (1) and (2)). It can be analogously
defined for the correlation between y and ŷ as:

Ryŷ ¼
y� 1 � yð ÞT ŷ� 1 � ŷ

� �

n� 1ð Þ ffiffiffiffiffiffiffiffiffiffi
sysŷ

p ;

s2
y ¼

y� 1 � yð ÞT y� 1 � yð Þ
n� 1ð Þ and

s2
ŷ ¼

ŷ� 1 � ŷ
� �T

ŷ� 1 � ŷ
� �

n� 1ð Þ

(5)

In the case of univariate regression, the coefficients (Equations

(4) and (5)) are equal in size but can differ in sign. The fitting
power of a model can be expressed by the square of Ryŷ, known
as the percentage of explained variance or coefficient of
determination, usually calculated in QSAR/QSPR as:

R2yŷ ¼ 1�
ŷ� 1 � ŷ
� �T

ŷ� 1 � ŷ
� �

y� 1 � yð ÞT y� 1 � yð Þ
(6)

The practice of relying exclusively on the coefficients (Equa-

tions (4)–(6)) and the residual sum of squares is not sufficient to
show how much a model follows the basic assumptions of
regression analysis.
Homogeneity: It is not contrary to randomness and diversity,

but means that the studied substances must belong to a well
defined class or related classes of compounds, with the same
chemical behavior, mechanism of biological action, chemical
reactivity mechanism or physico-chemical features.
Descriptors transformation: In the case that non-linearity is

detected, descriptors can be linearized by applying some trans-
formation or form products. Statistical significance of these
transforms with respect to y should be tested when there is
sufficient theoretical background for such transforms.
Dataset refining: This refers to practical achievement of

homogeneity, and it consists of outlier detection and separation
of essentially distinct groups of samples for separate analyses.
Scatterplots are good means to perform these operations.
Variable selection: Frequent problems with respect to this

item are as follows: no variable selection is performed; it is done
partially or not adequately or the presence of overfitting (excess
of descriptors in MLR, or too many latent variables in PLS) was not
completely checked during variable selection.
Dataset split: This item means splitting the data samples for

validation purposes (external validation and bootstrapping).
Problemsmay happenwhen a dataset is too small and impossible
to split, the splitting is arbitrarily and not based on procedures
that would include some random routines and the split does not
Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 681–693
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preserve statistical and chemical similarity between the new
datasets.
Selected descriptors: Descriptors for the final regression model

should not be of complex definition, difficult to understand or
interpret, but could be decomposed into measurable physical
properties. Descriptors with only two distinct values are the other
extreme: they do not sufficiently encode molecular diversity and
do not prove whether their relation with y is linear or nonlinear.
Model validation: Not applying model validation by means of

standard validation procedures (leave-one-out crossvalidation,
leave-many-out crossvalidation, y-randomization, bootstrapping,
jackknife, external validation, etc.) increases chances to obtain
statistically and chemically unreliable models.
Model interpretation: Statistical significance does not mean

practical significance. When talking about causality versus stati-
stical significance, language and logic are important to express
causality in the correct way [21]. Mistaking correlation for cau-
sality, especially in cases of high correlations, and lack of addi-
tional analysis to give an explanation for the cause of variation in
y [6,22,23] are constant dangers. The presence of correlation
between two variables can be observed as one of the following
cases [5]: (1) direct correlation with cause-and-effect relationship:
y is directly caused by x (it is possible for the opposite to happen,
i.e. x is caused by y [6,24], or it is difficult to determine the
direction of causality [23]); (2) direct correlation has no real
cause-and-effect relationship: both variables only affect each
other; (3) indirect correlation: both variables are related to a third
one or to a set of other variables (confounders); (4) Spurious
correlation: accidental association of x and y is an artifact of
various factors originating in the measurement, data analysis and
computational procedures; (5) nonsense (chance) correlation:
systematic association is obtained by pure coincidence and with
no natural cause. One has to distinguish three models or three
‘languages’ concerning regression analysis, with correct ‘trans-
lation’ between them [25]: the causal model (a hypothetical or
theoretical statement about the relation between x and y that
should be proved or confirmed by the analysis), the observational
model (noticed relations between x and y from collected data)
and the statistical model (regression equation). Mechanistic
interpretation of a QSAR/QSPR model is its chemical validation,
used to establish the practical significance of the model. The
model is verified if it follows chemical knowledge and is based on
causality and not on chance correlations. The ultimate goal of
Figure 1. Bar graphs for a MLR-QSPR model for prediction of boiling points o

the respective rc values.

J. Chemometrics 2010; 24: 681–693 Copyright � 20
QSAR/QSPR is to identify the fundamental properties (descrip-
tors) for certain y [26]. Interpretation of regression coefficients
should be done taking into account their statistical significance
and the way they were obtained (i.e. considering procedural
differences between MLR and PLS [27]).
After having worked for several years with QSAR and QSPR

applications and model validations, the authors of this work were
encouraged to further consider validation procedures for reg-
ression models (as presented recently [20]), especially one that
has not been taken sufficiently into account (also noticed during
discussions at the CMTPI 2009 conference): the regression
model’s self-consistency or the sign change problem. This pheno-
menon consists of two facts:
(1) T
f alk

10 J
he signs of the Pearson correlation coefficient rxy (Equation
(4); r in further text) for one or more descriptors in univariate
regression are not preserved during data splitting, i.e. coeffi-
cients for the complete (rc), training (rt) and external vali-
dation (re) sets do not satisfy the condition:

sgnðrcÞ ¼ sgnðrtÞ ¼ sgn ðreÞ (7Þ
(2) T
he signs of r (Equation (4)) from univariate regression and
the respective regression coefficient sign from multivariate
regression (Equation (3)) for a given descriptor do not satisfy
the equality:

sgnðrcÞ ¼ sgnðbcÞ ¼ sgnðbtÞ (8)

where bc and bt are regression coefficients for a particular
descriptor for the complete and training sets, respectively. An
illustrative example is a MLR-QSPR model for predicting boiling
points of alkanes [28] (in further text: dataset 36), in which the
first two of five descriptors show the signs of bc values opposite to
those of the respective rc values (Figure 1). A regression model is
self-consistent, i.e. the sign change problem is absent when both
conditions (Equations (7) and (8)) are valid for all descriptors. In
this work, the sign change problem is discussed in detail for a
significant number of QSAR and QSPR models from the literature.
The purpose of this discussion is to alert researchers to this
serious problem, which puts into question the significance
and chemical validity of QSAR and QSPR models, and to offer
methods for understanding and solving the problem that
occurs because of multiple omissions, discussed in the earlier
anes [28]. The first two descriptors show the opposite signs for bc and
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paragraphs, mainly misuse of statistical tools and misinterpreta-
tion of models. Even using large datasets and having satisfactory
model validation is not a guarantee for the absence of the sign
change problem.
2. METHODOLOGY

Datasets for which QSAR and QSPR regression models had been
built using MLR, PLS and Principal Component Regression (PCR)
were searched in the literature according to the following rules:
(1) QSAR datasets were preferred because QSAR is usually more
complex to study than QSPR; (2) original datasets were published
either with the paper or as supplementary information; (3) papers
published after the year 2000 were considered, with preference
for recent works; (4) extremely small datasets (less than 15
samples) were not used; (5) Among datasets in the same paper,
the one resulting in the model with the best compromise
between its statistics and the number of used descriptors was
selected; (6) Dataset split was used as in the original publications
whenever sufficient information for splitting was provided.
Otherwise, a new split was performed in this work based on
hierarchical cluster analysis (HCA) [12,17,20].
Each dataset was autoscaled, and then for each descriptor,

univariate linear regression x–y (Equations (1) and (2)) was carried
out using the complete dataset and the training set after data
splitting. Three Pearson correlation coefficients (rc and rt, and re
when external validation set contained more than six samples)
and two regression coefficients (bc and bt) were obtained. The
regression vectors were normalized by their Euclidean norm, to
be comparable with the regression coefficients. Additional
parameters, F-functions, were defined to characterize descriptors
with the sign change:

F1 ¼ sign rcrtð Þ
ffiffiffiffiffiffiffiffiffi
rcrtj j

p
F2 ¼ sign rcreð Þ

ffiffiffiffiffiffiffiffiffiffi
rcrej j

p
(9)

F3 ¼ sign rcbcð Þ
ffiffiffiffiffiffiffiffiffiffiffi
rcbcj j

p
F4 ¼ sign rcbtð Þ

ffiffiffiffiffiffiffiffiffiffi
rcbtj j

p
(10)

Data matrices, (rc, rt, re, bc and bt) and (F1, F2, F3 and F4) were
established when sufficiently large external sets were available,
Table I. Statistical summary for QSAR, QSPR and other regression

Parametera

Total no. cases
No. cases with no sign change problem (Criterion I)
No. cases with acceptable descriptor type (Criterion II)
No. cases with acceptable x–y scatterplot (Criterion III)
No. cases satisfying all criteria (Criterion IV)

a Counts and relative counts of models and descriptors satisfying th
problem, i.e. the sign consistency of all Pearson correlation coefficie
and split datasets, is confirmed; criterion II—the presence of a real
extreme change in its contribution to regression models during
considered unsuitable; criterion III—the presence of a descriptor wh
is necessary, i.e. the scatterplot has a reasonable bivariate x–y distrib
distinct samples, or performing modest descriptor’s linearization; c
b Regression models based exclusively on descriptors satisfying cri
c Descriptors satisfying criteria I–IV.

wileyonlinelibrary.com/journal/cem Copyright � 2010 John
otherwise matrices (rc, rt, bc and bt) and (F1, F3 and F4) were
constructed. All the matrices were analyzed by means of HCA
(with complete linkage) and principal component analysis (PCA)
[12,17] to find features by which acceptable descriptors could be
distinguished from those with the sign change. Using statistical
parameters to form matrices for exploratory analysis can provide
interesting results, as has been shown previously [18].
3. RESULTS AND DISCUSSION

3.1. Data matrices

Extensive search in the QSAR, QSPR and related literature resulted
in 50 datasets (meaning 50 regression models), ready or almost
ready for use, error-free and satisfying the search criteria. Among
the models that comprised 227 descriptors (Table S1 in Sup-
porting Information containing variables rc, rt, re, bc, bt, F1, F2, F3
and F4), 34 were typical QSAR model and eight were QSPR
models, while the rest could be associated either to QSAR or
QSPR. Most (42) were MLR models, the others were PLS, but no
PCR models were found. A rational HCA-based data split into
training and external validation sets had to be performed for 25
models. The entire literature search reflects several difficulties in
carrying out this and similar studies, the purpose of which is to
contribute to statistical and chemometrical advances in the areas
of regression analysis applied to QSAR and QSPR. The main
reason for this to occur is the default habit that there is no need to
publish the datasets used (more often in QSAR than in QSPR), and
this may put in question even the reproducibility of several
publications, which was also pointed out recently by Dearden
et al. [1]. As a rule, datasets from more complicated studies, such
as 3D- and 4D-QSAR, are never published.
The sign change problem, as will be shown in the later text

by defining four criteria for its assessment, turns out to be a very
serious and frequent problem in QSAR and QSPR studies, since
results in this work (Table I) are good representatives of
the literature in the areas in question. The main reasons for
this to occur are as follows: (1) procedural (use of automatic and
fast black-box procedures with little or no human intervention);
(2) educational (insufficient statistical and chemometrical knowl-
models from the literature

Modelsb Descriptorsc

50 (100%) 227 (100%)
18 (36%) 169 (74%)
10 (20%) 131 (58%)
13 (26%) 142 (63%)
9 (18%) 114 (50%)

e following criteria: criterion I—the absence of the sign change
nts and regression coefficients for a descriptor in the complete
descriptor, i.e. descriptor with no sign change problem and no
the data split, is necessary, while other descriptor types are
ich has acceptable scatterplot relative to the modeled variable y
ution or it may be easily remedied by excluding some outliers or
riterion IV—intersection of criteria I, II and III.
teria I–IV.

Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 681–693
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edge) and (3) conceptual, i.e. a misconception that no inter-
pretation and rigorous model validation of regression model is
necessary when the paper’s goal is not a concrete application
(testing new descriptors, theoretical approaches, computational
procedures and software). The last item may be rooted in
confusing statistics with mathematics [22], a viewpoint that was
inherited from these areas some decades ago. To our knowledge,
although there are several papers dealing with variable selection
and model validations in QSAR and QSPR, there is no recent
textbook or monograph devoted exclusively to these aspects of
QSAR and QSPR models.

3.2. Criterion I: the simplest check for the sign change
problem

An independent variable is free of the sign change problem if all
its five parameters (rc, rt, re, bc and bt, or only four when there is no
re for small external validation sets) satisfy Equations (7) and (8). A
regression model is free of sign change if all of its independent
variables are free of it. The simplest way to detect the sign change
problem is to calculate the values of the five parameters for all
descriptors and compare their signs (as shown in Table S1 in
Supporting Information). If any descriptor fails in this test, it has to
be rejected or replaced by a new one or eventually modified, a
new model has to be constructed and inspected for the sign
change problem and so on, until a new variable selection results
Figure 2. Scatterplots of the four F-functions versus the correlation coeffici

detected in negative regions of the F-functions.

J. Chemometrics 2010; 24: 681–693 Copyright � 20
in a reliable model, which should be then validated by other
procedures.
The four F-functions (Equations (9) and (10)) were defined to

show graphically various effects of the sign change problem on
the statistics of several QSAR/QSPR models. As can be seen in
Figure 2, the F-functions are symmetric when plotted against rc,
as expected. The data points placed in the negative regions of the
F-functions mean that the corresponding independent variables
incorporate the sign change problem and, consequently, reg-
ression models containing these descriptors are not reliable.
F1 and F2 account for data splits, where the sign change problem
is more problematic for the latter (external validation sets) than
for the former (training sets after splitting). Failure in F1 and F2
indicates inadequate data splitting or problematic descriptors
that do not allow satisfactory splitting. While F1 has a very few
and F2 a modest number of data points in the negative regions,
F3 and F4, which account for regression models before and
after splitting, respectively, have very well defined and similar
X-shaped scatterplot profiles. The profiles show clearer than the
scatterplot for F2 that the sign change problem can occur even for
high correlations between x and y (rc). F3 and F4 mean that an
independent variable x shows controversial direction of corre-
lation with y, for example, positive in univariate and negative in
multivariate regression models. Models based on such descrip-
tors are, of course, unreliable in many senses, as will be discussed
later.
ent rc, by which the presence of the sign change problem can be easily
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Figure 3. Scatterplots of the change D in regression coefficients versus the absolute value of the correlation coefficient rc, which occurs when the
independent variables are first used in univariate and then inmultivariate regression. (a) Complete datasets and (b) training sets, where blue and red data

points denote variables without and with the sign change problem, respectively.
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Other effects of the sign change problem can be noticed when
absolute or relative differences between the parameters (rc, rt, re,
bc and bt) are plotted against the absolute value of rc (Figures 3
and 4):

Dc ¼
rc � bc

rc

����

���� Dt ¼
rt � bc

rc

����

���� (11)

Dtej j ¼ rt � rej j Dte

rc

����

���� ¼
rt � re
rc

����

���� (12)

where Dc and Dt account for the difference between regression
coefficients from univariate (Equations (1) and (2)) and multi-
variate (Equation (3)) models for complete and training sets,
respectively, while jDtej and jDte/rcj present disagreements
Figure 4. The differenceDte between the correlation coefficients for training
correlation coefficient rc. (a) The absolute value of Dte, and (b) the absolute v

without and with the sign change problem, respectively.

wileyonlinelibrary.com/journal/cem Copyright � 2010 John
between training and external validation sets in terms of
correlation coefficients. In general, the weaker the correlation of x
with y, i.e. the lower the jrcj, the greater are the values of the D
parameters, meaning increasing instability of x due to data
splitting or multivariate modeling. This trend seems to be
exponential in Figure 3 and super-exponential in Figure 4b. When
variables with and without (red and blue dots, respectively in
colored version of Figures 3 and 4) the sign change problem are
distinguished, it is clear that the blue dots are predominant at
high correlations and the red dots prevail at low correlations. The
red dots show, on average, worse performance of the
corresponding variables over the whole range of jrcj. Figures 3
and 4b indicate that the blue dots are almost uniformly
distributed in the range of jrcj from 0.3 to 1, meaning that the
corresponding variables are characterized by at most 100%
change in regression coefficients (Dc and Dt) and also in
(rt) and external validation (re) sets, plotted versus the absolute value of the
alue of Dte relative to rc, where blue and red data points denote variables

Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 681–693
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correlation coefficients due to splitting (jDte/rcj). The value of
jrcj equal 0.3 has been described as a reasonable limit for
molecular descriptors in QSAR/QSPR [20], around which the
values of the lowest jrcj for pre-selected descriptors by means of
t- or F-tests, are concentrated. This agrees with the general
recommendation, launched in statistics by Cohen [11], that
the value 0.3 distinguishes low from moderate correlations.
Therefore, one of the origins of the sign change problem, as
noticed in Figures 3 and 4, is the use of statistically non-significant
descriptors, i.e. ones with low values of jrcj in univariate
regression. Such descriptors were neither rejected by the t- or
F-tests nor inspected in distribution histograms and scatterplots,
they were not tested for non-linearity, and maybe, the data
split was not adequate. As a consequence, these variables were
not identified as problematic during variable selection and
later in model validations, so that the models turned out to be
falsely good [20]. Distribution histograms for regression
coefficients jrcj, jrtj and jrej (refer to Figures S1–S3 given in
Supporting Information) show that a significant fraction of
descriptors is placed below the value of 0.3, even with a local
peak at 0.1.
According to criterion I, three quarters of descriptors are free of

the sign change problem, which accounts for hardly over one
third of satisfactory QSAR/QSPR models (Table I). This is an
extremely worrying situation that needs urgent action of QSAR/
QSPR researchers.
Table II. Decision rules for variable classification according to crit

Variable type Sign
change

Basic correlationsa

Real descriptor Absent jrcj � 0.3 and jrtj � 0.3
Quasi descriptor Absent jrcj � 0.3 and jrtj � 0.3

Anti descriptor Present jrcj � 0.3 and jrtj � 0.3
Real noise Absent (1) jrcj � 0.3 and jrtj< 0.3, or

(2) jrcj< 0.3 and jrtj � 0.3, or
(3) jrcj< 0.3 and jrtj< 0.3

Unstable noise Present (1) jrcj � 0.3 and jrtj< 0.3, or
(2) jrcj< 0.3 and jrtj � 0.3, or
(3) jrcj< 0.3 and jrtj< 0.3

Hidden noise Absent (1) jrcj � 0.3 and jrtj< 0.3, or
(2) jrcj< 0.3 and jrtj � 0.3, or
(3) jrcj< 0.3 and jrtj< 0.3

a The coefficients jrcj and jrtj are the absolute values of the Pearson c
variable y for the complete dataset and for the training set after d
b The coefficient jrej is the absolute value of the Pearson correlation c
the external validation set after data split.
c The coefficients jbcj and jbtj are the normalized regression vectors
respectively.

J. Chemometrics 2010; 24: 681–693 Copyright � 20
3.3. Criterion II: the six types of independent
variables—three noise and three descriptor types

The sign change problem seems to be a complex phenomenon,
because of which an empirical extension of criterion I, called
criterion II, is being established. Criterion II explores the signs and
absolute values of the parameters (rc, rt, re, bc and bt), and takes
into account four items: the sign change, training correlations,
external correlation and contributions to the model. Detailed
rules for this criterion are presented in Table II, where it is seen
that one must carefully inspect combinations of the four items to
correctly assign classes to variables. One must have in mind that
these rules are fast and easy to apply but are of qualitative nature.
More quantitative treatments of the parameters should include t-
or F-test for statistical significance of xj–y correlations and
calculation of errors or confidence intervals for regression
coefficients (as done in the usual way for MLR or by applying
jackknifing for PLS [27]). The nomenclature of the six classes is
based on the following rules:
(1) In
erio

orre
ata
oeffi

for

10 J
dependent variables are divided into descriptors (statisti-
cally significant correlations with y) and noise variables (i.e.
noise with respect to y). Descriptors have correlation coeffi-
cients satisfying criteria jrcj> 0.3 and jrtj> 0.3, which is not
valid for noise variables.
(2) T
he noise variables are divided into: (a) unstable noise:
unstable because the sign change problem occurs in the
n II

External correlationb Contribution to
regression modelc

jrej � 0.3 jbcj � 0.001 and jbtj � 0.001
(1) jrej � 0.3 and [(a) jbcj � 0.001
and jbtj< 0.001, or (b) jbcj< 0.001
and jbtj � 0.001, or (c) jbcj< 0.001

and jbtj< 0.001], or
(2) jrej< 0.3 and [jbcj � 0.001

and jbtj � 0.001], or
(3) jrej< 0.3 and [(a) jbcj � 0.001
and jbtj< 0.001, or (b) jbcj< 0.001
and jbtj � 0.001, or (c) jbcj< 0.001

and jbtj< 0.001]
Any Any
Any jbcj< 0.3 and jbtj< 0.3

Any Any

Any (1) jbcj � 0.3 and jbtj< 0.3, or
(2) jbcj< 0.3 and jbtj � 0.3, or
(3) jbcj< 0.3 and jbtj< 0.3

lation coefficients between a descriptor and the dependent
split, respectively.
cient between a descriptor and the dependent variable y for

the complete dataset and for the training set after data split,
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data split or when buildingmultivariatemodels, or in both; (b)
hidden noise: hidden in a multivariate model, with no sign
change problem but with very significant contribution to the
model (jbcj> 0.3 or jbtj> 0.3, or both) and (c) real noise: real
because it behaves as expected for a noise variable, with no
sign change problem and with low or modest contribution to
the model (jbcj< 0.3 or jbtj< 0.3, or both).
(3) T
he descriptors are divided into: (a) anti descriptor: anti
because its behavior in the multivariate model is against
its univariate nature, i.e. it undergoes the sign change pro-
blem; (b) quasi descriptor: quasi because the descriptor does
not suffer from the sign change problem, but it has very bad
performance in splitting (jrej< 0.3) or in its contribution to
the model (jbcj< 0.001 or jbtj< 0.001, which has not been
observed in this work), or both and (c) real descriptor: real
because the descriptor is probably a true descriptor, satisfying
all the conditions of criterion II.

Practical application of criterion II consists of careful inspection
of the parameters (rc, rt, re, bc and bt), by which each descriptor is
classified into one of the six classes, as shown in Table S2 in
Supporting Information, where the descriptors from the only
acceptable class (real descriptors) are marked in pink. That is why
the noise descriptors can be called ‘trash descriptors’, while anti and
quasi descriptors perhaps can be remedied by some action such
as simple linearization, removal of a very few outliers and distinct
samples and sample separation into distinct classes. The reader
should have in mind that, due to possible instability of regression
coefficients, a noise variable can be real in one model, unstable in
another and even hidden in some other. Similarly, a descriptor may
seem real in onemodel and anti or quasi in another. However, there
is a high probability that a good descriptor used in various models
will stay in the same class, as will be shown in subsection 3.7 for
dataset 48. In fact, whether some descriptor is real, i.e. it belongs
to the desired class of descriptors, can be noticed from various
regression models during variable selection, resampling-based
model validations, or by exclusion or addition of some descriptors.
Criterion II shows that only less than 60% of the investigated

descriptors are acceptable, which corresponds to one-fifth of
the studied QSAR/QSPR models (Table I). This is an extremely
pre-occupying statistics, and also discouraging if no change can
be expected in near future.

3.4. Criterion III: a simple inspection and characterization
of x–y scatterplots

This criterion consists of graphical inspection of distribution
histograms of x and y, and of x–y bivariate distribution in the
form of scatterplots, by which normality of joint and individual
distributions is tested. A descriptor is characterized as: (1) good
(statistically very significant), and certainly it should be used for
multivariate modeling because of its well-defined linear relation
with y; (2) acceptable (statistically significant), when there are
some problems in the bivariate distribution, but the descriptor
can be used in multivariate modeling the way it is, or via modest
data modification (descriptor linearization or exclusion of a very
few outliers or distinct samples) and (3) not acceptable (stati-
stically not significant), because it cannot be used for multivariate
modeling. Conditional acceptance under (2) accounts for well-
defined nonlinearity, and the presence of one or a very few
outliers or distinct samples that weakly or moderately affect the
means and standard deviations of the bivariate distribution.
yonlinelibrary.com/journal/cem Copyright � 2010 John
However, when serious problems with a descriptor under (3) are
noticed in the scatterplot, then no reasonably modest modifi-
cation can change this situation. These are as follows: large
dispersion of data points without defined linear or nonlinear
relations between x and y; too many outliers or distinct samples
or even groups, a few outliers or distinct groups but far away from
the majority of data points (i.e. with strong effect on the statistics
of the bivariate plot) and the existence of only two distinct values
of indicator variable x.
The 227 descriptors are analyzed and characterized with

additional diagnostic detail in Table S2 which can be found in
the Supporting Information, where the suitable descriptor types
(good and acceptable descriptors) are marked pink. Similar to
criterion II, criterion III shows that only 63% of descriptors can be
used for multivariate models, the large majority of which only
after modest modification. In other words, only one-quarter of
regression models could be considered as reliable (Table I).
Criteria II and III agree in terms of descriptors’ acceptability and
unacceptability for 184 descriptors (81%), meaning that the
possibility for the sign change problem to occur may be greatly
reduced by graphical means.
3.5. Criterion IV: intersection of criteria I, II and III

This criterion is simply the intersection of the three previous
criteria, classifying descriptors as reliable and not reliable. A
descriptor that satisfies this criterion (reliable) does not have the
sign change problem, it is a real descriptor, and its x–y scatterplot
is good or at least acceptable. Only one half of the investigated
descriptors pass this criterion, which corresponds to less than
one-fifth of the regression models studied (Table I), raising the
question of the sense and usefulness of the great majority of
QSAR and QSPR studies. What may be a positive observation is
the fact that the models with at least one descriptor satisfying
criterion IV make up a large majority (46 or 92%), meaning that it
is possible to obtain reliable descriptors in QSAR and QSPR.
3.6. Chemometrical approach to criteria I–IV by means of
exploratory analysis

Exploratory analysis was performed on four data matrices: (1)
F-functions F1, F2, F3 and F4 for 174 descriptors; (2) F-functions F1,
F3 and F4 for 227 descriptors; (3) statistical parameters rc, rt, re, bc
and bt for 174 descriptors and (4) statistical parameters rc, rt, bc
and bt for 227 descriptors. The results are shown in Figure 5 and
Figures S4–S14 with comments in Supporting Information.
The scores plots and sample dendrograms are colored to be
consistent with Figures 1–3, where statistically most significant
and least significant descriptors are in blue and red, respectively,
while other transitional classes are in other corresponding colors.
The purpose of this analysis is to enable a graphical aid in
understanding and treatment of the sign change problem in
terms of the four proposed criteria.
The four F-functions for 174 descriptors, due to certain mutual

similarity (Figure 2), undergo some data contraction, so that two
principal components (PCs) describe 95% of the total variance
(PC1: 71% and PC2: 24%). A rather clear separation in the scores
plots (Figure 5) is visible between descriptors with and without
the sign change problem (criterion I), descriptors and noise
variables (criterion II), good/acceptable and not acceptable
descriptors (criterion III) and between reliable and not
Wiley & Sons, Ltd. J. Chemometrics 2010; 24: 681–693



Figure 5. The PC1-PC2 scores plots from the PCA analysis of the four F-functions (F1, F2, F3 and F4), with classes of descriptors marked in different colors

and separated by arbitrarily drawn magenta lines. Criterion I: blue—no sign change, red—sign change present; Criterion II: blue, cyan, green—real,

quasi, anti descriptors, respectively, and gray, orange, red—real, unstable, hidden noise, respectively; Criterion III: blue—good, green—acceptable,
red—not acceptable x–y scatterplots; Criterion IV: blue—reliable, red—not reliable descriptors. Abbreviations u, h and r in pink stand for unstable,

hidden and real noise, respectively, according to criterion II.
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reliable descriptors (criterion IV). Six types of descriptor and noise
variables can be also distinguished (criterion II). The reader can
notice that descriptors with the best performance in all criteria
always lie in the region of blue data points (in colored version of
Figure 5), defined by the highest values of PC1 and values of PC2
close to zero. The most problematic descriptors are placed at the
lowest values of PC1 and around zero of PC2. Distinction of the
descriptor classes can be also noticed in the HCA dendrogram
(Figure S4), which consists of the greater (A) and smaller (B) cluster,
with 111 and 63 descriptors, respectively. What all the four criteria
have in common is the general distribution of the classes, so
that cluster A contains the majority of statistically significant
descriptors, while most of the problematic descriptors are in
cluster B. It is interesting to notice that the two clusters show some
differentiation with respect to two items (see Figure S5 with
comments): descriptors fromQSAR/QSAR-likemodels versus those
from QSPR/QSPR-like models and descriptors from PLS versus
those from MLR models. When PCA and HCA are applied to three
F-functions for 227 descriptors, similar results to these just
described are obtained (see Figures S6–S8 with comments).
The five parameters (rc, rt, re, bc and bt) for 174 descriptors also

undergo some data contraction, so two PCs describe 97% of the
original variance (PC1: 80% and PC2: 17%). Data points in the scores
plots (Figure S9), when placed farther from the origin along PC1,
mean higher correlation of descriptors with y, and, when placed
distant from the origin along PC2, mean the sign change problem.
PC1 can be identified as a degree of the correlation, while PC2
accounts for its correct direction, so the best descriptors are always
at extremes of PC1 and around zero PC2, while the worst are spread
around the origin and extremes of PC2. The HCA dendrogram
shows equilibrated distribution of all descriptors classes between
two clusters C and D (Figure S10), including PLS-MLR and QSAR-
QSPR distinctions (Figure S11), while distinctions between classes
J. Chemometrics 2010; 24: 681–693 Copyright � 20
can be observed at the subcluster level. When applying PCA and
HCA to the four parameters (rc, rt, bc and bt) for 227 descriptors,
similar results to these just described are obtained (see Figures
S12–S14 with comments).

3.7. Rationalizing the origins of the sign change problem
with some examples

Both graphical and numerical approaches to inspect statistical
significance of correlations between all descriptors and the
dependent variable y are the crucial steps for regression analysis.
During these procedures linear or nonlinear trends, outliers and
distinct groups are observed, and it can be determined which
samples and descriptors will be used in further calculations.
Guyon et al. [29] have pointed out that, when roles of each
descriptor in univariate and multivariate regression models are
compared, falsely relevant and falsely irrelevant variables may
appear. Therefore, four types of descriptors can be identified:
(1) truly irrelevant (not significant in univariate and multivariate
regression); (2) falsely irrelevant (not significant in univariate but
significant in multivariate regression); (3) falsely relevant (signi-
ficant in univariate but insignificant in multivariate regression)
and (4) truly relevant (significant in univariate and multivariate
regression). Comparing this classification with I–II, relations
indeed can be found, and are obvious in case of criterion II: all
noise variables are irrelevant (truly or falsely), real descriptors are
truly relevant and other descriptors are falsely relevant.
Falsely irrelevant descriptors, as nicely demonstrated by Guyon

et al. [29], are not descriptors that, after inspecting their relations
with y, have low correlation and act as relevant in multivariate
models (hidden or unstable noise variables according to criterion
II). A falsely irrelevant descriptor is weakly correlated to y, but is
10 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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also a so-called confounder, a causal variable of another variable
that is well-correlated to y. Therefore, the correlation between
the confounder and y is indirect, but is of theoretical importance.
The interaction between the confounder and its effect variable
can be modeled as their product or another more complicated
term. Such a new variable is an independent variable that must
be well correlated to y and treated in the same way as other
descriptors.
Falsely relevant descriptors are certainly the most frequent

type of problematic descriptors, in many cases accompanied
with the sign change problem. There are several causes for
the existence of such descriptors, to which MLR and PLS models
are not immune: (a) failure in eliminating noise variables;
(b) presence of outliers and distinct samples; (c) other significant
deviations of the x–y distribution from the normal bivariate
distribution; (d) untreated nonlinearity; (e) Simpson’s paradox
[11,29,30]; (f ) multicollinearity (this includes high descriptors’
intercorrelations and redundancy in the covariance matrix in
MLR, and some other correlation effects in PLS) and (g) overfitting
(use of too many descriptors in MLR and too many latent
variables in PLS). Simpson’s paradox accounts for distinct classes
of samples, which, when put together, show trends in the x–y
scatterplot that are significantly different from those for the
individual classes. This can be seen for topological descriptor
SX1CC (Figure 6), which was used in a QSPR model to predict
boiling points of alkanes (refer to dataset 36 from Table S1 in
Supporting Information, with the sign change problem as shown
in Figure 1) [28]. SX1CC is an anti descriptor, with acceptable x–y
scatterplot after linearization, and not reliable. There are seven
classes of alkanes, isomer groups for which correlations of SX1CC
Figure 6. Illustration of Simpson’s paradox in the scatterplot of boiling

point (Bp) against a topological descriptor SX1CC from QSPR dataset 36 on

alkanes [28]. The regression line for all compounds is the solid line, the

seven regression lines for isomer groups are dashed and the interpolating
curve for normal alkanes is drawn in gray. Data points for distinct isomer

groups are drawn using different symbols.

wileyonlinelibrary.com/journal/cem Copyright � 2010 John
with the boiling point are mutually similar and negative, and not
positive as for all 150 alkanes. Since some important information
about the classes was ignored when putting them together, the
common correlation is a false, artificial effect that does not reflect
the true relation between SX1CC and boiling point.
Figures 3 and 4 have already been discussed in detail with

respect to the increasing instability of descriptors in terms of their
regression coefficients as a function of decreasing correlation to
y. Such an instability can be noticed during variable selection in a
concrete QSAR or QSPR study. The stability of three descriptors
from the final MLR model for prediction of human toxicity HAP
[31] (dataset 48 in Table S1), LUMO, Human Liver (human liver
toxicity as –logIC50) and NO (number of oxygen atoms), can
illustrate this trend well (Figure 7). The complete descriptors pool
in this QSAR-like study [31] contained 22 variables, so each of the
three descriptors is used in 21 bivariate linear regressions to
predict HAP (Table S3 in Supporting Information), and all b1c
values are plotted against jr1cj for the three descriptors. The
values in Table S3 are for the complete dataset, and very similar
results were obtained for the training set based on the split from
Table S1 (not shown). According to criterion II, Human Liver and
LUMO were previously characterized as real descriptors (see
Table S2), and the same is confirmed by 21 bivariate regressions
(Figure 7), where LUMO is somewhat more stable than Human
Figure 7. Illustration of descriptors’ instability in terms of b1c plotted

against jr1cj for all bivariate regressions generated from the complete
descriptors pool for dataset 48. The three descriptors are those from the

final model for prediction of human toxicity HAP [32].
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Liver due to its higher correlation with HAP. NO, which was char-
acterized as hidden noise and with serious problems in its x–y
scatterplot (Table S2), now shows larger variations in b1c, because
of which it behaves as real noise and hidden noise. One may
notice some very high absolute values of b1c, which is a good
illustration of falsely relevant variables.
The paper ‘Multicollinearity’ in Salkind’s statistical encyclope-

dia [11] summarizes the effect of multicollinearity on MLR: (1)
large fluctuation (instability) of the estimated regression coe-
fficients caused by small perturbations to the model (inclusion or
exclusion of some variables or samples); (2) the sign change
problem and (3) the possibility that the full regression model is
statistically significant and, at the same time, some or all
regression coefficients are not significant. This way, the inherent
nature of the regression coefficient [5,6,8] is lost (see Table S3
with comments in Supporting Information). Geometrically spea-
king, the MLR equation (Equation (3)) is not represented well by a
hyperplane in the mþ 1-dimensional space [3], because the
projections of the hyperplane onto the coordinate planes, the
regression lines, do not have the same slopes as the regression
lines from the corresponding univariate regressions (Equation
(2)), and even may change directions (the sign change problem).
Regression coefficients in MLR and PLS are complicated

rational functions of all correlation coefficients that quantify
linear relations between descriptors and y and also between
descriptors, as can be seen when comparing bivariate regressions
MLR and PLS (Table III). (More details about these expressions and
more complicated cases of MLR are given in Table S4 and
Appendices 1 and 2 of Supporting Information.) Computationally
speaking, MLR becomes useless in cases of pronounced multi-
collinearity because of inversion of the covariance matrix which is
not a problem for PLS. A simpler form of multicollinearity, i.e.
descriptor intercorrelations, is included in regression coefficients
in MLR and also in PLS (Table III). Besides that, all descriptors
participate in defining regression coefficients, literally they
‘compete’ or ‘concur’ [5], and it is difficult to predict which will
be the value and sign of a particular regression coefficient.
Descriptors that share basically the same information will have
their contributions similar in the multivariate model but smaller
than in the respective univariate regressions [32]. It seems from
expressions for regression coefficients that multicollinearity
enhances this competition, which may result in distinguishing
descriptors as ‘winners’ (important to the model) and ‘losers’ (not
really important, even with changed signs). The PLS example
Table III. Multicollinearity effects on regression coefficients in biv

Univariate
regression(s)b

Multivariate
regression

MLR without
multicollinearity

ŷ ¼ b1x1 ŷ ¼ b1x1 þ b2x2 b1 ¼ b1 ¼ r1

ŷ ¼ b2x2 b2 ¼ b2 ¼ r2

a All variables are autoscaled, i.e. scaled to unit variance.
b Univariate regressions for descriptors x1 and x2. The predicted valu
are regression coefficients for x1 and x2, respectively. The Pearson co
x2 and y are r1 and r2, respectively, while r12 is the correlation coe

J. Chemometrics 2010; 24: 681–693 Copyright � 20
presented has a didactical purpose to show that intercorrelations
are indeed important for PLS, that descriptors ‘compete’ also in
PLS and that intercorrelations are taken into account differently in
PLS than in MLR. Peterangelo and Seybold warn [33] that, even
when multicollinearity is present to a significant extent, it may
happen that descriptors, highly correlated with others, contain
some important information and should stay in the model.
Coming back to the bivariate MLR models associated to dataset

48 (Figure 7), it is possible to show how correlations between
descriptors affect regression coefficients. When absolute values of
regression coefficients b1c from 21 bivariate models are plotted
against the absolute value of correlation coefficients between y and
other variables (r2c) or of coefficients of intercorrelations (r12) (data
are in Table S3), systematic variations can be noticed for descriptors
Human Liver (Figure S15), LUMO (Figure S16) and NO (Figure S17).
LUMO, which is the most stable among the three descriptors
(Figure 7), is not affected by the presence of other descriptors and
multicollinearity (Figure S16). The contribution of Human Liver to
the bivariate models is modestly affected by multicollinearity and
descriptor’s competition (Figure S15). However, the noise variable
NO illustrates rather clearly that the contribution of such variables to
models decreases with the increase of multicollinearity and the
correlation of other variables with y.
A more complex form of multicollinearity in MLR is due to

significant correlations between some descriptors and the linear
combination of two or more descriptors, in which the former is
not important for the model, known as redundancy [34], and is
related to overfitting in MLR (excess of descriptors that is not so
obvious when observing the correlation matrix). This is very
difficult to observe graphically, and perhaps dispersion of the
data points in Figures S15 and S17 is caused by it.
It is interesting to investigate how overfitting in PLS affects the

sign change problem. For this purpose, some parameters were
calculated for all eight datasets for PLS models (defined in Table
S1) for all latent variables, as is shown in Figure 8, and Table S5
and Figure S18 with comments in Supporting Information. The
average F3-function (F3) was calculated as the sum of F3 values for
all descriptors in a model and then divided by the number m of
descriptors. When plotted as a function of the number of latent
variables (NLV), it is noticeable that the general tendency of F3 is
decreasing, and in cases of the sign change problem this is very
pronounced, up to values around 0.1 or even below. It is well-
known in the literature that PLS overfitting occurs when the
number of latent variables is greater than the optimum number
ariate MLR and PLSa

MLR with
multicollinearity

PLS with one LV

b1 ¼ r1 � r2r12
1� r212

6¼ b1 b1 ¼
r1 r21 þ r22
� �

r1 þ r2 þ r1r2r
2
12

6¼ b1

b2 ¼ r2 � r1r12
1� r212

6¼ b2 b2 ¼
r2 r21 þ r22
� �

r1 þ r2 þ r1r2r
2
12

6¼ b2

es of the dependent variable y are marked with ŷ, and b1 and b2
rrelation coefficients for correlations between descriptors x1 and
fficient for descriptors’ intercorrelation.
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Figure 8. The average F3-functions (F3) for the complete dataset as a

function of the number of latent variables (NLV) for eight PLS datasets,
are marked with numbers and different colors (2—black, 3—magenta,

5—green, 8—red, 11—cyan, 14—gray, 15—brown and 18—blue). The

values of NLV for the PLS models from literature are marked with small

rectangular boxes (which are semi-solid if the sign change has been
detected). Small solid squares mean the first latent variable at which the

sign change occurs.
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[15,35–37]. Leave-one-out crossvalidation has been frequently
reported as not being always adequate for determination of this
parameter.
A more general vision about the sign change problem of all 50

regression models can be obtained when parameters F3, its
analogue F4 (average F4-function) and other parameters based on
descriptors with the sign change problem are calculated, as
shown in Table S6 and Figures S19–S21 with comments in
Supporting Information. In these plots, F3 and F4 always decrease
with m, indicating the presence of the sign change problem in
some critical interval of values, especially when several des-
criptors are used. The extent of the sign change problem may be
disastrous, when most descriptors in a model show sign changes.
All these trends are common to MLR and PLS models, to QSAR/
QSAR-like as well to QSPR/QSPR-like models.
4. CONCLUSIONS

The sign change problem of descriptors in QSAR, QSPR and
related studies is defined in this paper as the controversy in the
signs of contributions of a particular descriptor when its
correlation coefficients and regression coefficients are compared
for univariate and multivariate regression models, using both
complete and split datasets. This is a very serious and frequent
problem that puts into question the majority of the investigated
regression models, which is the most probable situation in the
literature. Four criteria, created in this work, were applied to 50
QSAR and QSPR models with 227 descriptors by means of a set of
rules and by exploratory analysis, in order to characterize
descriptors, identify problematic ones and improve regression
models so that the sign change problem could be avoided. The
origins of the sign change problem are discussed in terms of
violations of the fundamental statistical and QSAR/QSPR rules,
especially in terms of multicollinearity. For practical purposes, it is
recommended that the proposed or some other equivalent
criteria be used in descriptors’ pre-selection and variable
selection, and that the sign change problem is checked prior
wileyonlinelibrary.com/journal/cem Copyright � 2010 John
to model validation. A final and very important step to eliminate
the sign change problem is model interpretation, still omitted
in several QSAR, QSPR and related studies. If the described
procedures are not sufficient to eliminate the sign change
problem, then the dataset must be changed by introducing new
descriptors or samples (substances), or as the ultimate step, the
problem must be redefined.
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