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SUMMARY 

A method of rank determination which can also be used to construct models for some non-linear processes 
by means of a global linearizing transformation (GLT) is presented. A test case using the theoretical 
properties of an ideal gas is analyzed for comparison with the log linearization. A real data set from a 
Taguchi sensor array is analyzed by the method and the results are compared with previous work. The 
linearizing transformations are constructed using spline functions for the examples treated in this paper, 
although other kinds of functions can be used. 
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INTRODUCTION 

The use of computers to analyze chemical data has increased dramatically over the past 20 
years, partially owing to the vast computational resources made available by the recent advances 
in hardware and software. A large scientific calculation that would be expensive and take hours 
on a mainframe 15 years ago can now be easily accomplished with a minicomputer, allowing 
some previously unthinkable problems to be solved routinely. 

On the other hand, data acquisition in analytical chemistry has also reached a veiy 
sophisticated point, especially with computerized instrumentation' which can yield enormous 
quantities of very reliable chemical data. One of the most interesting features of modem 
instrumentation is the number of variables which can be measured on a single sample. For 
example, absorption intensities at 1000 or more wavelengths are commonly recorded in one 
sample specti-um, but of course a huge raw list of numbers is of no value for the understanding 
of the problem and one can easily become overwhelmed by it. Visualization is the most 
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important cognitive interface between researcher and data and that also has been aided 
tremendously by the computer.’ In many cases visualization may not be adequate without a 
theoretical framework to interpret the display. Consequently, the demand for more sophisticated 
tools to be used in the interpretation of such data has rapidly increased. 

The fundamental mathematical technique supporting the majority of the existing methods for 
dealing with multivariate analysis is principal component analysis (PCA)3,4 via singular value 
decomposition (SVD). Beginning with data obtained from P types of measurements ( P  
variables) on each sample, the total data collected for N samples are stored in a large (N x P )  
matrix R which carries, besides some noise, a high degree of redundancy of information due to 
correlated variables. PCA is motivated by the idea that the measured variables might be 
associated in such a way that the essential information can be reconstructed from a much 
smaller set of variables, K e P,  which are obtained from the original data. This new compressed 
set of variables should contain all the important information of the original data set but 
ai-ranged in an easier way to handle and interpret. In the case where K is really small, the 
advantage of a graphical visualization becomes much clearer. 

However, it is not always perceived that in the background of the above argument, as in 
many other places in ~ c i e n c e , ~ . ~  it is tacitly assumed that the involved variables are the result of 
linear functional relations. For example, in spectroscopy the theoretical model is given by 
Beer’s law’ in which the absorption intensities are proportional to the concentrations. Thus, 
theoretically, the matrix R, which in this case is formed by the measurements R,j of the jth 
absorption intensity for the ith sample, should exhibit a rank equal to the number of different 
components in all samples. Deviations from the linear theoiy and noise from experimental 
errors will cause the matrix R to have full rank with probability one and its theoretical rank ( the 
so-called pseudorank) must be recovered by a singular value type of analysis. 

A linear functional relation seldom holds as an adequate theoretical model over a wide range 
of measurements. Most classical linear theoretical models in physics and chemistry are obtained 
from a local linearization of a more general non-linear model or result directly from linear 
approximate assumptions. A local linearization is always possible if the variables are smoothly 
related even though its restriction may be so strong as to make the approximation useless. The 
very same Beer’s law, for instance, is an excellent approximation in a certain range of 
concentrations and wavelengths, but for a wider range a non-linear modification must be made. 
Consequently, linear methods are not always sufficient to properly analyze experimental data 
which are frequently collected in a wide range. In many cases the variables are highly non- 
linear’ and the linear approximation might be completely useless as a reasonable assumption for 
any considerable subset of the data. Thus, the development of appropriate methods is necessary 
for the treatment of non-linear processes. 

Of course, the term ‘non-linear process’ is too vague to admit a unified and general treatment 
and any useful method for the study of processes which are not amenable to linear methods 
must also have a restricted range of applications. Many of the so called ‘non-linear methods’ 
are in fact techniques which are used to reduce a (vaguely defined) class of problems into a 
foim where usual linear methods can be employed. Locally weighted regression (LWR), for 
example, uses restricted regions where linear approximations are acceptable in order to cover a 
larger range of interest.’ Another way to extend the linear hypothesis is to make powers and 
products of independent variables take the role of new variables, which is veiy useful when 
those are in fact (at least approximately) the kind of non-linearities present in the process.” The 
main disadvantage of this procedure is that the rank of the new data may not reflect the real 
dimensional structure of the process. A more general approach is to attempt a global 
transfoimation of the response variables by monotone functions so as to yield a linear process 
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in the new transformed variables. A blend of the two previous approaches can also be employed 
in some cases. 

For example, when analyzing a binary mixture of gases by MOS gas sensors, the jth probe 
response can be theoretically described by the function 

(1) 

where c ,  and c? are the gas concentrations, A , B, and nj are probe parameters and mI and in, are 
constants depending on the respective gases." If the transformations given by the functions 

R,(c,, c 2 )  = [A,(c,)'"l+ B,(c2)'"2]"' 

T,(x) = x IlnJ (2) 
are applied to the probe response R,, the new response variables Y, = T,(R,) will be given as 
linear functions of the independent variables ( c , ) " ~  and (c?)'"2. Now, if for a set of samples 
(1 Q i 4 N )  a matrix of measurements R,, is produced, then the transformed matrix Y /, = T,(R,,) 
will certainly exhibit the correct pseudorank of two, since it is a collection of N vectors in W" 
(i.e. the real P-dimensional Euclidean space) obtained by a linear transformation of a collection 
of N vectors 

c, = ((c2,)"'l, (c~,)'"?) from R2 (3) 
The log function is the most commonly used linearizing transfoimation in a variety of 
applications from psychology, I' chemistry, biology, I 3 * l 4  physics, '' etc., where the theoretical 
model relating response variables to predictor variables IS given by products and powers. The 
Box-Cox transformation given by functions of the type 

Iogz - 

A 
T(x) = , A > O  (4) 

is also commonly used and somewhat generalizes the log transfoimation, which is its limit for % 
approaching zero. However, it is still a very specific transformation which can be veiy useful in 
many particular instances (as in the above example), but, just like the log transfoimation, it 
cannot linearize in a general sense. 

An example of useful log linearization (which will be treated as an illustration later) can be 
given by the study of thermodynamical properties of an ideal gas. Suppose that temperature (T) 
and pressure ( P )  are the state variables and that their values and volume ( V ) ,  among other 
properties, are measured for a set of samples. Plotting the experimental results in a T ,  P versus 
V plot, one finds that their values for all samples lie in a 'noisy' neighborhood of a surface 
(Figure 1) given by the theoretical model for the ideal gas, 

RT v= - 
P 

If the measured temperature and pressure vary in a small range, a tangent or secant plane will 
be an acceptable model to describe the results. However, if the range spreads over a wider 
region which includes a non-negligible variation in the surface curvature, a secant plane is no 
longer appropriate. Now, if the log function is used to transform each variable, the theoretical 
model is easily expressed as a linear relation among the transformed variables; i.e. 

P" = log P 
T* =log T (6) 
V*=lOg V=log R+log  T-log P = C + T " + P *  

and then the values for v" will lie in a noisy neighborhood of the plane described by T" and P* 
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Figure 1. P-V-T surface for an ideal gas 

according to the above equation, which will be apparent by a PCA analysis of the data. 
However, one is not always so fortunate as to be confronted with such simple theoretical 

relations. The log function would not be as helpful if the functional relationship between the 
variables included sums or other forms inappropriate to the use of logarithm properties. 
Suppose, for example, that the gas samples being analyzed are not under ideal conditions but 
behave as van der Waals gases. Then the theoretical model which relates V (and other 
properties) to T and P becomes much more complicated as shown by the implicit relation 

and the log transformation (or any of the above-mentioned transformations) cannot be justified. 
Of course, this only means that those are not the appropriate transformations for this case, 

but still the main idea behind the method can be further generalized by the use of a larger class 
of functions. How to choose the appropriate transformation is the main question. One possible 
approach is to analyze a theoretical model (if there is a reliable one) to help find functions that 
could be good candidates to disentangle the non-linear functional relations. This depends 
heavily on a precise theoretical formulation of the process. A second path, followed by the 
present work, is to look for a global linearizing transformation (GLT) in a set of functions 
described by a finite number of parameters, which, although not quite ‘functionally correct’, is 
convenient owing to a balance between descriptive power and parsimony. 

Many classes of functions (orthogonal polynomials, quasi-polynomials, trigonometric 
functions, Pad6 approximations, wavelets, BCzier curves, etc.) could possibly be used 
depending on the known special features of the problem.‘Polynomials of some order would be 
an obvious first choice. On second thought, however, one quickly realizes that they are 
somewhat unbounded as functional constivction blocks. A much more powerful and 
manageable class of functions can be constructed by piecewise polynomials of low order as the 
spline functions. In the present paper,  spline^'^"^'^ are employed since they are known for their 
effectiveness as approximates and also because of their simple construction from a fixed basis. 
The splines are not used in this instance for fitting nor with the objective of approximating a 
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definite function, but to construct one out of many possible approximate linearizations. It must 
be emphasized that linearizing transformation functions are not unique and so the simpler the 
function used. the better. 

LINEARIZING TRANSFORMATION 

In a linear theoretical model in chemometrics, when samples i ( I  s is N )  are analyzed by 
sensors j (1 s j c  P), it is assumed that the results R,, of the measurements are linear functions 
of the concentrations of the substances present in the samples. i f  the sensors measure distinct 
properties, then each row vector of the data matrix (R,,) = R is the result of a linear function of 
the concentration vector c,  E IRK (i.e. the real K-dimensional Euclidean space) from sample i 
and, consequently, for P, N >  K (which is always the case) the matrix R should theoretically 
have rank K. This is simply the fundamental principle of dimension preservation from linear 
algebra. Of course, noise will make R of maximum rank (min ( N , P ) )  and in practice SVD- 
based methods are used to determine it’s pseudorank. 

It can be easily seen (as in the example of the MOS gas sensors above) that even if the 
theoretical model establishes the response variables R, as linear expressions with respect to 
general univariable functions of each concentration, i.e. 

(8) R,(ci, -.., ~ K ) = A , i f i ( c i )  + ... + A , K f K ( c K )  

linear methods can still be used to determine the pseudorank of the data matrices and models 
can be constructed with respect to the ‘abstract’ concentrations C,,, =f,,,(c,,,). 

Now, in a very general situation, if the response variables R j  are theoretically given by non- 
linear functions of the h n d  

then univariable non-linear transformations of R, (such as the inverse function of F,) may 
restore the new response variables to the case previously described. 

However, if any one sensor yields a response that is a non-linear function of all the 
concentrations, the dimension invariance principle of linear algebra cannot be applied in a 
simple way. The resulting row vectors of the matrix R will not necessarily be close to a K- 
dimensional linear manifold because of the dimensional distortion effect caused by non- 
linearities. 

Geometrically this can be better understood if K = 2 and P = 3 as in the ideal gas example 
mentioned above. In the linear case the points given by the N row vectors of R would be close 
to.a plane in R3 (which can be determined by least squares). Now a non-linear function can be 
easily imagined which would fold this two-dimensional sheet in R’ in such a way that no plane 
would be a good approximation to those N points. In such a case there is no justification for the 
direct application of the elementary principle of dimension invariance from linear algebra. 

The much more general topological principle of dimension invariance valid for smooth 
non-linear transformations” cannot have a direct practical use here, since there is no simple 
non-linear SVD algorithm for the determination of the intrinsic (invariant) dimension. 
Actually, there is not much hope of designing a method which could handle all types of 
non-linear processes in a reasonable way and, to some extent, a restrictive hypothesis must 
be assumed in order to focus on appropriate techniques. The topological complexity that 
would be allowed in the pursuit of a general method is enormous and cannot be approached 
by a single path. ” 
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In the present paper the main restriction is that a linearizing transformation T is sought only 
among functions which can be represented by a P-tuple of P (possibly different) univariable 
real functions, i.e. 

T ( x , ,  ...,x p>=o- ’ , ( x , ) ,  . . - , T P ( X P ) )  (10) 

This restriction will simplify enormously the search for the appropriate T and will not be too 
severe on the scope of the method considering the vast applications of old function-specific 
methods (log linearization, Box-Cox, etc.) which are particular cases of it. Also, the 
Kolmogorov theorem on representation of real functions of several variables” suggests that this 
method might be applicable to very general situations if the functions T,(x) are appropriately 
constructed. 

Thus the main goal is to design an algorithm which can construct an appropiiate linearizing 
function of the above type for each non-linear process. The specific function when applied to 
the original response (vector) variable of the non-linear process will produce a new response 
(vector) variable which can be treated by the usual linear methods for rank determination and, 
eventually, model building. It is not always expected that the new response variables will have a 
direct linear relationship with the original components, but some important information, e.g. 
their number (rank determination), will certainly be revealed. 

For example, if the function 

R:RK+RP,  R ( c , ,  c2 ,..., c , )=  R ( c ) =  ( R , ( c ) ,  ..., Rp(c ) )  (1 1) 

(theoretically) represents the responses of an ordered array of P sensors to a sample composed 
of K substances of concentrations c I ,  ..., c K ,  the main goal of the method is to look for a 
function 

T :  R p + R p ,  T ( X ) = ~ ’ , ( X ) ,  ..., T P ( x ) )  (12) 

from the above class such that the process represented now by a theoretical model obtained by the 
composition of function T with model R (i.e. TOR) can be treated by linear methods. This 
requirement is obviously too vague, because the null function would be a trivial example of such T 
and, if the dimension (rank) is to be preserved, it is necessaiy to impose the condition that T is 
invertible. This is a very hard conchtion to characterize in the general case but, considering the 
restricted functional form assumed for T ,  will be attained simply by requiring that eveiy co- 
ordinate function Tj(x) must be strictly monotone. Le t  S be the set of T satisfying those conditions. 

The general arguments for designing an algorithm to calculate an appropriate linearizing 
transformation T for a non-linear process R will rely on the topological principle of dimension 
invariance for smooth functions.” Suppose that the non-linear function R has rank K. This 
means in practical terms that at least K of the P sensors are different and technically this can be 
represented by the rank of the Jacobian matrix 

aRj 

aci 
- 

Then, given a cloud of points in R K  (samples), the set of transformed points in R p  via R (i.e. 
the data matrix of responses) will lie on a (non-linear) manifold of dimension K. When R is 
linear, they lie on a hyperplane of dimension K in Rip, but in the general case this transfoimed 
cloud of points will certainly define a higher-dimensional hyperplane due to non-linear 
distortion. If the points are transformed again by any invertible function 

T :  IWP+RP (14) 
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they will continue to lie on a (possibly different) manifold of (invariant) dimension K. 
However, the hyperplane defined by them can have a lower dimension than previously, the least 
possible dimension being K, and this is exactly the characterization which will be used to 
construct the linearization. The global linearizing transformation (GLT) T * will be such that the 
data matrix 

R , = R j ( c , ,  ... , cK j ) ,  denotedbyR=R(C) (15) 
is transformed into a new data matrix 

Y, = T,(R,,,,), denoted by Y = T ( R )  
of smallest possible rank ( K ) .  

A numerical evaluation for this criterion can be given by 

J ( T }  = IIY - Y q  

where 11 - 1) is any matrix norm and Y is the K-dimensional truncation of matrix Y obtained 
from singular value decomposition. The general algorithm for obtaining the global linearizing 
transformation T" is to calculate the extremum problem 

min J( T }  
T E S  

The main difficulty in formulating a practical algorithm for this problem is the fact that the set 
S is too large and cannot be described by a finite number of parameters. In order to remedy this 
situationgin appropriate set { Zj] of linearly independent functions from S will be chosen in such 
a way that by linear combinations of the type 

m 

where a,,,>O and Xu,= 1, the set S can be approximately described. As has already been 
pointed out, these functions can be chosen in many different ways. In the examples treated in 
this paper, a special basis of spline functions introduced by Ramsay '' has been used and their 
detailed construction is presented in the Appendix. 

Assume for technical convenience that the raw data R,, are scaled between zero and one and 
call them X,. Let us now call S the set of functions 

T:  [O, 1 I p +  [O ,1 lp  (20) 

where each T,: [0, 1 ] + [0, 1 ] is continuous and strictly monotonic. 
If the family is described parametrically by the coefficients a , ,  ..., n,, such that 

Y(X, a,, ..., a,) are the general transformed data, all that must be done is to minimize the 
function 

f(a,, ..., a,,)= IIY(X, a , ,  ..., a,>-YK(X, a , ,  . . . , a ,  ,Ill (22) 
under the above-mentioned constraints (equation (19)) on a , ,  . .., a,,, which can be accomplished 
with any of the existing optimization codes. The norm 11 can be chosen in a variety of ways 
as has already been pointed out. In this paper the Frobenius norm (which means a least squares 
approximation) was selected for the Taguchi sensor array example and a maximum likelihood 
approach for the ideal gas. 
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If the 'hidden' dimension K is not known a yriori, the above argument can still be used, but 
then Y * must be chosen such that (17) is minimized also with respect to K. 

The argument presented in this section has its origin in the work of Kruskal and Shepard," 
which was also later used by Ramsay."." 

In this paper M -  and I-spline functions such as introduced by Winsberg and Ramsay '' were 
used to build the family of non-linear transformations and the optimizations were performed 
using MATLAB. 

EXAMPLE: IDEAL GAS 

This first example is presented as an illustration of the method. It was deliberately chosen in a 
simple and well-known context where the log function is the obvious linearizing transformation 
so that a comparison can be made with the constructed result following a tradition initiated by 
Kruskal and Shepard." 

A simulated data set was generated by the state equation for one mole of ideal gas (i.e. the 
molecules occupy no volume and have no interaction forces between them). For a given range 
of temperature (T) and pressure ( P )  the values of eight different properties (variables) were 
calculated for one mole of benzene. These properties are listed in Table 1 .  Note that these eight 
variables are defined as functions of temperature and pressure. The temperature values ranged 
from 300 to 1000 K in 70 K increments and for each temperature value ten different values of 

Table 1. Ideal gas variables 

Variabled Mathematical expressionb Units 

Temperature 
Pressure 

Volume 

Isobaric coefficient of thermal expression 

Isothermal compressi bility 

Diffusion coefficient 

Coefficient of viscosity 

Coefficient of thermal conductivity 

T 
P 

RT V = -  
P 

1 

T 
a = -  

1 

P 
p = -  

I 12 

K 
Pa 

m' 

K" 

Pa- 

m' s-' 

kg s" m-' 

"See e.g. Reference 22. 
h R ,  ideal gas constant (8.3144 Jmol-'K-'); r n ,  m a s  of one molecule of bcnzene (129.2983~ lo-" kg);  X ,  
Boltzmann constant (1.3807 x J K - ' ) ;  (7, benzene collision cross-section (0.88 x lo-'* m'); f, mean velocity of 
molecules, C! = (8kT/nin)l/'); 1, mean free path, I = (l/d2) kT/SnP;  C,, heat capacity at constant volume, computed 
from classical panition function ( 6 R ) .  



GLOBAL LINEARIZING TRANSFORMATION 19 

pressure were used from 0.15 x lo6 to 1.5 x lo6 Pa, equally spaced, generating a 110 x 8 data 
matrix R. 

Six of the variables are non-linearly related to T and P ,  by means of products of their 
powers and of course the log function can be used to transform the values of each variable so 
that the redundancies can be expressed as a linear combination of the transformed variables 
log T and log P. In other words, there exists a set of eight analytical monotone 
transformations (actually the same log function) which make Y = T(R) approximately 
bidimensional (pseudorank two) and where the factor scores for each observation are log T 
and log P .  

A normally distributed high level of random error (10%) was added to each variable. Figure 2 
shows the plots of each variable versus the log function. Note that although the function is the 

0 '  
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DIF. COEF. 

1 

-16 -14 -12 3 

0.015 
THERM. COND. 

0.00 
-2.2 -5 -4.8 -4.6 -4.4 

Figure 2. Ideal gas example: untransformed data R (with 10% error) versus log R for each variable 
defined in Table 1 
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same, it is plotted in different scales and ranges. Each variable of the raw data was then mean 
centered and scaled between zero and one, generating the mamx X as a normalizing procedure 
convenient for the application of the transformation. The transforming functions Tj(x) ,  1 < j <  P ,  
were made from order-two M-splines with two intenor knots located at the tertiles for variables 1, 
2,4,5 and 7. For variables 3 , 6  and 8 one of them is at the first tertile and the other slightly to the 
right of the second tertile. By using these functions, the transformed matrix Y" = T"(X) which 
has the closest matrix of rank two was obtained. 

The estimated transformed data Y" = T " ( X )  of rank two are plotted in Figure 3 against the 
true transformed data log R. The linear relationship is shown to be better for some than for 
others, but quite visible for all the variables. 
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Figure 3. Ideal gas example: transformed data Y*= T*(X) versus log R for each variable defined in 
Table 1.  Order-two M-splines with two interior knots were used to obtain the transformation 
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Figure 4 shows the effect of the transformation in the dimensional structure of the data. It 
is clear that the transformed data Y* = T * ( X )  have a sharp two-dimensional structure as 
opposed to that of the untransformed data matrix X; the first two singular values of 
Y* = T" (X) are predominant against the remaining ones. Of course the log-transformed 
data log X also show a two-dimensional structure as expected. Actually it can be seen 
(Figure 4) that the log linearization and the GLT method give very close results for the 
singular value analysis. 

Figure 5 displays the results obtained by the use of three interior knots for each variable, one 
located close to the inferior end, one in the middle and the third close to the superior end of the 
data, following a strategy suggested by Hastie and Tibshirani.' Note that the use of this 
additional knot did not alter these transformations significantly. 

I t  is important to analyze the behavior of the transformed data using a different 
dimensional structure. Dimensionalities one, two and three were used for the estimated 
transformation, maintaining the knot positions selected above. The results are shown in 
Figure 6, where the singular values (log scale) of the untransformed data X and 
transformed data Y * = T X  (X) are plotted for the three different cases. The transformation 
functions obtained for rank one (not shown) cannot linearize some of the variables. From 
these results it is clear that the data really have a bidimensional structure and this example 
shows how this procedure can be useful for determining the pseudorank of non-linear 
processes. 

The same kind of analysis can be extended to non-ideal gases such as those which follow 
van der Waals' equation, with the difference that in this case explicit theoretical expressions 
are not available for comparison. Instead of extending this example to the van der Waals 
gases, a real data set which is known to be non-linear and for which a theoretical linearizing 
transformation is not available will be analyzed in the next section. 

untransf. data 

1.5 

u) - 2 0.5- 
5 

.- P 

$4.5 - 

L m - = 0 -  
VI - 
- 

-1 - 

-1.5 - 

1 
1 2 3 4 5 6 7 8 -2' 

number of singular values 

Figure 4. Ideal gas example: log of singular values versus number of factors before and after GLT and 
log transformations (mean-centered data) 
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Figure 5. Ideal gas example: transformed data Y* = T * ( X )  versus log R for each variable defined in 
Table 1. Order-two M-splines with three interior knots were used to obtain the transformation 

APPLICATION: RANK DETERMINATION AND MODEL BUILDING FOR THE 
TAGUCHI SENSOR ARRAY DATA 

Metal-oxide-semiconductor gas sensors were introduced by Taguchi in the early 1960s and 
since then have received much attention in the chemical literature. The signal originates from 
the interaction of the analyte and oxygen with the solid metal oxide surface. They have been 
used for multicomponent gas analysis. 

However, their low-cost versions are non-selective and exhibit considerable cross- 
interactions, resulting in a non-linear behavior." Consequently, it is desirable to develop 
methods which could help extract useful information from data given by a sensor array. 
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Figure 6. Ideal gas example: log of singular values versus number of factors for untransformed data 
(with 10% error) and transformed data for ranks one, two and three (mean-centered data). Second-order 

M-splines with one interior knot were used to obtain the transformation 

Reliable theoretical formulae for the signal R produced by a sintered Si02 gas sensor as a 
d function of gas concentration ci were obtained2 and can be written as 

where A,; and mi, are parameters depending upon both the gas and the sensor and R ,  and pi > 0 
are only dependent upon the sensor. The general problem from a chemometric point of view is 
to estimate concentrations given the instrument output R ii' Of course it is clearly impossible to 
produce an analytic inverse for the above formulae even for the case of P = K .  As in the linear 
case, the main goal is to develop a method which will give the desired information with an 
'excess' (redundant) of output, i.e. when P s- K. 

The data set used in this application was collected by W. P. Carey from the Department of 
Electrical Engineering, University of Washington, using an array of eight Taguchi gas sensors 
which are non-linear in their response  characteristic^.'^ The raw data set contains the response 
from 20 different mixtures of organic solvent vapors of toluene and benzene, replicated five 
times with concentrations varying from 5 to 500 ppm, generating a 100 x 8 data matrix. This 
data set has been analyzed using various linear and non-linear methods for calibration by 
Sekulic et aZ.'5 where, from 100 samples, 50 were used as a calibration set to build the model 
and 50 for prediction. 

The first step in the application of the GLT method to this problem will be to obtain the best 
linear linearizing transformation T", (equation (18)) of a given dimensional structure by using 
spline functions and the Frobenius norm. The data matrix R is the 50 x 8 calibration set used by 
Sekulic et a1." 
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The raw data had values between zero and one and did not require scaling. Mean centering 
was applied to each variable to give the X-matrix. One knot per variable was used with second- 
order M-splines. 

The main result obtained from this first step is the determination of the correct rank of the 
data. The spline transformation was applied with predefined ranks m o  and three. The locations 
of the knots were optimized independently for each variable and the best linear combination of 
the spline basis set (best transformation functions) which reduced the dimensional structure 
from P = 8 to K = 2 or 3 was determined. The results are compared with the untransformed data 
in Figure 7. The difference between the second and third eigenvalues is greatest when a rank-two 
model is used for the transformation. It is obvious then that the transformation made the 
calibration set clearly bidimensional. In the same figure it is shown that with a linear direct 
procedure the process seems to be full rank. 

The second step, which is a much more difficult problem, is the use of the linearized 
transformed data matrix Y” = T ” ( X )  to construct models for the concentrations of toluene and 
benzene by the well-known PCR m e t h ~ d . ~ , ~  The final step will be to  estimate the concentrations 
of the prediction set samples. 

Once the rank of the system has been identified, the calibration model for this specific rank is 
constructed. Since the calibration and prediction sets are available, the root mean square error of 
prediction given by 

can be used to select the appropriate model. Here ci is the concentration of sample i from the 
prediction set and c ;̂ is the corresponding value estimated by the calibration model for the ith 

2 
-- . untransf. data 
- transf. data (2 factors) 

-.t 
2 3 4 5 6 7 

number of singular values 
-5’ 

1 I 

Figure 7. Taguchi sensors example: log of singular values versus number of factors for untransformed 
data and transformed data for ranks two and three (mean-centered data). Second-order M-splines with one 

interior knot were used to obtain the transformation 
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sample. N is the number of samples in the prediction data set. As suggested by Sekulic et ai.,25 
the results are expressed in terms of the percent relative prediction given by 

RMSEP x 100 
%REL.RMSEP = 

C 

where 2 is the mean concentration value in the prediction set of samples. 
The model depends upon the knot selection (number and location) and the order of the M -  

splines, which has been chosen in this case to be two. Using one knot per variable, their 
locations were chosen to be those which yield the lowest %REL.RMSEP for the calibration set 
with bidimensional structure. The results are given in Table 2. Note that the linearizing 
transformation function of rank two gives results which improve upon the 'best' results 
obtained by PCR models with a much larger number of components to span the two- 
dimensional concentration space (shown in parentheses"). Table 2 also contains the results 
given by direct application of the PCR method with the correct rank two, which shows the 
%REL.RMSEP above 48%. 

Two knots for each variable were also employed and their locations were optimized for each 
variable at a time, considering a bidimensional structure model. As before, the least squares 
approach was used. The %REL.RMSEP is also given in Table 2. The results are slightly better 
than those for the previous case with only one knot per variable. 

In order to determine how the transformation affected the original data, the transformed data 
Y" = T"(R) are plotted versus the raw data R for each variable in Figure 8. Note that for 
variables 1, 4, 6 and 8, except at the lower end, the plots are basically linear. They are also all 
very close to each other, indicating that these variables are fairly proportional to the 
concentrations and certainly originated from very similar sensors. Actually the array consisted 
of only five different types of sensors.24 From Figure 8 it can be seen that three of them are of 
the same type (4, 6 and 8), one gives a similar response (1) and also two others are of the same 
type (2 and 7). However, the most interesting result in Figure 8 is the extent of the 
transformation for variable 3 which from the plot can be considered to be the only one that is 
'highly' non-linear. All the other variables show very mild non-linearity compared with variable 

Table 2. Percent relative prediction error (%REL.RMSEP) for 
Taguchi untransformed data and transformed data of rank two 
using one and two interior knots 

Untransformed data R" 

PCR PCR 

Toluene 22.57 (7) 
Benzene 22.11 (8) 

51.68 (2) 
48.66 (2) 

Transformed data YO = T* (R) 

One interior knot Two interior knots 
PCR PCR 

Toluene 20.93 
Benzene 21.81 

18.70 
17.28 

*Value in parentheses refer to number of factors incorporated in model. 
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3. Thus some improvement in the %REL.RMSEP might be expected if this sensor (variable) 
were excluded from the array. These results are shown in Figure 9, where the %REL.RMSEP 
values obtained from the PCR models for the raw data R are compared, first taking into account 
and then ignoring the results from the third sensor. The symbols 0 indicate the %REL.RMSEP 
obtained by the GLT method with rank two (from Table 2) and the symbols * indicate the 
number of factors chosen in Reference 25 to build the calibration model. Upon removing the 
third variable, the shape of the curve for the standard eiror of prediction versus the number of 
factors in the model changes drastically for the PCR methods. There is a decrease in the 
%REL.RMSEP of approximately 19% (from 55 to 36) and 24% (from 48.5 to 24.5) for 
toluene and benzene respectively when the number of factors in the PCR models is increased 
from one to two. When variable 3 is included in the model, this decrease is only 4.5% (from 
56.2 to 51.7) for toluene and no decrease in the %REL.RMSEP is observed for benzene. The 
benzene plot in Figure 9 shows almost no decrease in the prediction error for models with more 
than two factors. Thus sensor 3 is responsible for a high degree of non-linear behavior in the 
data set. 

1, 1 

Sensors 1.4.6.8 
0 
0 0.2 0.4 0.6 0.8 

Untransi. Data R 

'sensor 3 
0.5 
0 0.2 0.4 0.6 0.8 

I 
0.6 0.8 

Figure 8. Taguchi sensors example: untransformed data versus transformed data for each variable. 
Second-order M-splines with two interior knots were used to obtain the transformation 

Toluene 

lo; 2 4 6 A lo: 2 4 6 A 
number of factors in the model number of factors in the model 

Figure 9. %REL.RMSEP using PCR models for all sensors (- ) and after removing sensor 3 (-.-,-): 
0, %REL.RMSEP obtained by GLT method of rank two (using two interior knots); *, number of factors 

used in Reference 25 to build calibration model 
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Third-order piecewise polynomials were considered and, as in the case of the ideal gas, no 
significant changes were observed in the results. 

This example clearly shows the exploratory data analysis advantages derived from this 
method. Besides being useful for determining the true effective rank of a data set, the method 
can uncover non-linearities which can be avoided when linear models are employed or 
transformed to improve the model-building process. In the present case it became obvious 
(Figure 8) that variable (sensor) 3 is the main and almost the only source of high non-linearity. 
It is shown how this procedure can lead to a rank-two model (the true rank) with prediction 
accuracy better than that obtained by linear models of excessive rank. 

For both examples studied in this paper, the knot selection for exploratory data analysis did 
not require any exhaustive knot optimization. They were found heuristically by a slight 
displacement from their initial position (median, tertiles) in directions which improve equation 
(17). The model building is more sensitive to the knot positions, but, on the other hand, that 
could be found automatically if the knot positions were included as parameters in the 
optimization process. 

CONCLUSIONS 

It is shown in this paper that the difficult problem of rank determination with non-linear data can 
be successfully approached in many cases by the GLT method, which makes it a potential 
method for preprocessing data. The method is also shown to be efficient in uncovering non- 
linearities. For those processes which are described by more general functional relations, the 
method gives a global linearizing transformation which can be used for model building by 
conventional linear methods. 

Both examples treated have a low number of variables (eight), but the method can also be 
applied to a much larger number of variables, which is the case for spectral data where 
P = 1000 variables are common. In this case one can select a representative small number Po of 
variables and apply the above method to obtain their Po spline transformations. The whole data 
set can then be transformed, each variable by its respective representative transformation. 

The theoretical core of this paper is the linearization scheme, which is formulated in such a 
way that it can be implemented by many different techniques depending on the class of 
functions { I , )  and the matrix norm. This flexibility allows its use for a much broader range of 
non-linear processes. 

The method of global linearization presented here is a powerful technique for rank 
determination that extends log linearization (and other function specific methods) to much more 
general situations. Of course it is not intended for problems where linearization is not necessary 
or where it can be achieved with known elementary functions. On the other hand, like any 
useful non-linear method, it cannot be completely general for reasons of complexity. Instead, 
its range of applications covers an important middle ground between the familiar and the 
unattainable extremes and it has the advantage of conceptual and computational simplicity and 
vast possibility of generalization. 

One might suspect that for some highly non-linear problems (i.e. where there are ‘strong 
interactions’ between independent variables) even more general kinds of transformations would 
be necessary instead of the univariable functions employed here. However, at least from a 
theoretical point of view, Kolmogorov’s approximation theory ensures that univariable 
functions are sufficient for the most general linearization if used appropriately. Understandably, 
its practical implementation will make the problem vastly more complex and will be left for 
future work where more sophisticated topological and analytical methods are to be employed. 
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APPENDIX: THE MONOTONE SPLINES 

Spline functions have their origin in the problem of describing an interpolating curve through a 
given set of points under the condition of minimum elastic energy. Cubic splines, for example, 
are defined by the minimum for the functional 

among twice continuously differentiable functions and are constructed analytically as piecewise 
polynomials. The integral term imposes a penalization for wiggling (with weight I > 0) and accounts 
for a balance between its interpolating character and its smoothness.26 Their theory has been 
extensively developed together with applications to many different  area^""",^'.^^ since the late 1970s. 

In this paper, splines of a special type introduced by Ramsay I' (M- and I-splines) are used as 
functional blocks for the approximate description of the class of functions S. 

M-splines of order k on a closed interval [a, b]  are constructed as piecewise polynomials of 
degree k -  1 in a mesh of previously determined q subintervals described by a sequence of 
junction points { E j } ,  where a = 6, < ... < g q +  I = b. Within each subinterval [ E j ,  E j + ] ]  the function 
is represented by a polynomial of order k -  1 and by matching smoothness conditions at the 
boundaries. For the case where continuity is maximum, two polynomials from adjacent intervals 
are required to have equal derivatives or all orders from zero to k - 2 at a common point. Given the 
order k and the degree of smoothness required, the spline functions are usually defined by a 
sequence of numbers called knots, 1 t i ] ,  as described in the following. One single knot is placed at 
each interior junction point 6, and k knots are placed at each of the endpoints a and b. 

The initial total number of degrees of freedom is kq,  i.e. the number of parameters necessary 
to characterize a polynomial of degree k -  1 times the number q of subintervals. Now, if the 
matching conditions ( k -  1 for each interior point) are deducted, it is concluded that the 
dimension of the function space associated with the M-splines is 

n = k q -  (k- 1)(q - I ) =  k + q -  1 (27) 
Thus for a given selection of order and knots a family of Mi-splines (set of basis functions) is 
defined recursively l 7  by 

The interesting properties of M-splines are that they are positive in each interval [ t i ,  and 
zero elsewhere and also normalized, 

1,; M, dx- = 1 (29) 
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The construction of I-splines, which are actually the ones used in the paper, is essentially 
achieved by integration of the M-splines. For x E [ t j ,  t j+  ,) they can be defined by 

f o r j  < i 10 

From the non-negativity of M-splines the monotonicity of I is assured and it must also be 
noted that I,(a) = 0 and I;( b)  = 1. 

Once the basis set has been defined as above, the construction of a family of monotone 
functions T,(x, a , ,  ..., a,) is carried out by linear combination under the restriction that the 
coefficients must be non-negative and have sum equal to one, i.e. 

r = o  

~ ( x ,  a,, ..., a,, = 1 aJr(x> 
r =  1 

ar B 0 

C a r = l  
n 

I 
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