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Abstract

Dihydroartemisinin derivatives with antimalarial activity against P. falciparum resistant to mefloquine are proposed with the
aid of quantum chemistry and multivariate analysis methods (PCA, KNN, and SIMCA). The principal component analysis
(PCA) and hierarchical cluster analysis (HCA) showed that the descriptors: molecular softness (MS), total surface area (TSA),
Randic’s index, path-1 molecular connectivity-average (CHI1A), bond information index (BIC), shape index based on paths of
length 2 of Kier (2K), and directional (related to molecular size, dimension: axis 1 and weight: van der Waals’ volume) and non-
directional (related to linear contribution to the total molecular size and weight: van der Waals’ volume) WHIM-3D indices
(L1v and Tv), respectively, are responsible for the classification between the higher and lower antimalarial activity of the
derivatives. The compounds predicted as of high activity by the three methods are 22 and 28 in Fig. 2. © 2001 Published by
Elsevier Science B.V.
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1. Introduction

Artemisinin or qinghaosu (Fig. 1, compound 1) is a
sesquiterpene containing the 1,2,4-trioxane ring
system which have been used in China for the treat-
ment of P. falciparum malaria [1], a disease respon-
sible through approximately two million of deaths per
year [2].

Computational and quantitative structure—activity
relationship (QSAR) studies have been developed to
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de Ciéncias Exatas e Naturais, Universidade Federal do Para, CP
11101, 66075-110 Belém, Para, Brazil.

unravel the drug’s mechanism of action and give
guidelines for synthesizing new derivatives with
improved efficiency and stability. Thomson et al.
studied theoretically the structure of Artemisinin and
related molecules using both semiempirical and ab
initio quantum chemistry methods, and investigated
the structure activity relationship of these molecules
as antimalarials using molecular electrostatic poten-
tials maps [3]. Bernardinelli et al. have done a
systematic study of the structure of Artemisinin-like
molecules using semiempirical and ab initio methods.
Molecular electrostatic potential maps have been
evaluated and used in an attempt to identify the key
features of the molecules that are necessary for their
activity [4]. Avery et al. have built a comparative
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Fig. 1. Dihydroartemisinin derivatives with antimalarial activity (Training Set).

molecular field analysis model for C-9 analogs of
Artemisinin and 10-deoxoartemisinin [5,6]. Also,
Suter et al. have correlated the three-dimensional
molecular electrostatic potentials, obtained through
quantum chemistry and projected on two-dimensional

surfaces, with the biological activity of Artemisinin
derivatives by using neural networks [7]. More
recently, Nguyen—Cong et al. described an experi-
ment with the multivariate adaptive regression splines
method along with multiple linear regression,
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Fig. 2. Dihidroartemisinin derivatives with antimalarial activity unknown (Test Set).

alternation conditional expectations, and projection
pursuit regression, on a series of diastereomeric dihy-
droartemisinin a-alkylbenzylic ethers using Mulli-
ken’s atomic net charges, obtained in the PM3
semiempirical molecular orbital approach, as
descriptors [8].

In this article, we present a quantum chemical and

multivariate study of 16 Artemisinin derivative
compounds reported in the literature as showing
different degrees of antimalarial activity against P.
falciparum resistant to mefloquine [9]. In a first step,
we built the geometry of the compounds with the
strategy described in the Section 2.2 followed by the
calculation of the molecular descriptors (See Section
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Calculated and experimental values of the 1,2,4-trioxane ring parameters in Artemisinin (distances in A and angles in degrees)

Parameters® ZINDOP AMI® PM3¢ 6-31G* 3-21G’ Experimental®
do102 1.2376 1.2882 1.5439 1.4467 1.4619 1.475
d02C3 1.4000 1.4471 1.4026 1.4351 1.4405 1.417
dC304 1.3960 1.4267 1.4283 1.4347 1.4359 1.448
d04C5 1.3929 1.4160 1.4033 1.4026 1.4074 1.388
dCsC6 1.5137 1.5370 1.5551 1.5325 1.5294 1.528
dc601 1.4161 1.4683 1.4255 1.4687 1.4772 1.450
A0102C3 114.31 112.53 110.34 108.80 107.10 107.6
A02C304 105.37 103.60 104.81 106.76 107.28 107.2
AC304C5 115.843 115.48 116.01 117.30 115.67 1135
AO4C5C6 113.27 113.51 115.20 112.28 112.08 114.5
AC5C601 107.29 111.07 113.18 110.91 111.57 111.1
AC60102 118.38 113.74 112.29 113.24 111.29 111.5
DO102C304 —70.403 —77.80 —-73.31 —71.84 —74.67 -75.5
DO2C304C5 36.37 42,07 52.70 33.39 32.30 36.3
DC304C5C6 17.42 11.40 2811 25.32 28.29 24.8
DO4C5C601 —46.61 —41.77 —40.51 —49.41 -50.86 -50.8
DC5C60102 18.11 12.05 19.94 12.51 9,989 123
DC60102C3 40.13 47.05 35.63 46.70 50.33 477

* The atoms are numbered according to compound 1 in Fig. 1.
® Method from Ref. [16].

¢ Method from Ref. [17].

4 Method from Ref. [18].

¢ Basis sets from Ref. [14].

! Basis sets from Ref. [15].

Values from Ref. [20]

2.3). And subsequently, the multivariate methods, of
principal component analysis (PCA) and hierarchical
clustering (HCA) [10] were used to analyze the data
and obtain a relationship between the calculated
descriptors and the antimalarial activity, classifying
the compounds into two categories, high activity
(HA) and low activity (LA). The K-nearest neighbor
(KNN) [11] and soft independent modeling of class
analogy (SIMCA) [12], two well established pattern
recognition and classification modeling methods,
were used for model building and prediction of new
derivatives of the compounds studied.

2. Methods
2.1. The compounds studied
The molecular structure of compounds used in

present study are shown in Figs. 1 (Training Set)
and 2 (Test Set). The atomic numbering, which we

have adopted to study the compounds, is shown in
compound 1 (Fig. 1). The dihydroartemisinin deriva-
tives in Fig. 1 were tested in vitro against the human
malaria, P. falciparum resistant to mefloquine. The
ICsps for these compounds correspond to average
values of at least three experiments reported by Lin
and Miller [9]. In our study, we labeled the
compounds synthesized and tested by Lin and Miller
(compounds 4-16) along with Artemisinin, artelinic
acid, and artemether (compounds 1-3, respectively)
in two classes: HA compounds (those with
IC590 < 1.00 ng/ml) and low antimalarial Activity
compounds (those with IC5y > 1.00 ng/ml).

2.2. Molecular modeling

In the molecular modeling step, the point of depar-
ture was the construction of the structure of compound
1 (Artemisinin) with aid of the GAUSSVIEW program
[13]. Complete geometry optimization was performed
with the 3-21G basis set [14]. In order to check the
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reliability of the geometry obtained, we also opti-
mized the geometry of compound 1 with 6-31G
basis set [15] and using the ZINDO [16], AM1 [17]
and PM3 [18] methods. The semiempirical calcula-
tions were performed with aid of zININDO 3.5 and
MOPAC 6.0 (using EF and PRECISE keywords [19]
programs. Table 1 shows the calculated and experi-
mental values [20] of the 1,2,4-trioxane ring para-
meters in Artemisinin for the different methods
used. In Artemisinin all the methods describe well
the torsion angles of the twist boat conformation
adopted. It is interesting to note that ZINDO, AMI,
and PM3 methods, in general give larger errors in the
torsion angles than do the ab initio. The agreement
between the ab initio 6-31G and 3-21G results is very
good, especially considering that the dO102 bond
length is closer to experimental value than in any of
the semiempirical results.

To the compounds 2—16 (Fig. 1) and 17-28 (Fig. 2)
the geometries were built with the optimized geome-
try of the Artemisinin using also GAUSSVIEW program.
The ab initio calculations were carried out, using
GUASSIAN 94 program and the DIRECT-SCF method
[21].

2.3. Molecular descriptors

In order to perform the calculations of descriptors
the conformation which is most stable for a given
compound was used, and the following molecular
descriptors were calculated: total energy (Er), highest
occupied molecular orbital energy (HOMO), lowest
unoccupied molecular orbital energy (LUMO), Mulli-
ken’s electronegativity (), molecular hardness (MH),
molecular softness (MS), dipole moment (w), atomic
charge ¢;, i = 1, 2,...,20, sum of absolute values of the
atomic charges Q;, i=1, 2,...,6, sum of absolute
values of the charges of all atoms in the molecules
(Q7), total surface area (TSA), molecular volume
(Vol), molecular refractivity (MR), octanol-water
partition coefficient (log P), torsion angle formed by
1, 2, 3, and 4 atoms (DO102C3C4), and distance of
the atoms 1 to 2 (dO102). We also included topolo-
gical [22] and three-dimensional molecular descrip-
tors [23] with the purpose of representing different
sources of chemical information in terms of size,
shape of a molecule, symmetry and atom distribution
in the molecule. The analysis was started with 172

molecular descriptors selected so that they represent
electronic, hydrophobic, and steric features of the
antimalarial compounds. These features are supposed
to be important for investigating structure—activity
relationship (SAR) of dihydroartemisinin derivatives
against P. falciparum resistant to mefloquine.

The quantum chemical descriptors were calculated
using the 3-21G standard basis set available in the
GAUSSIAN 94 program [21]. The descriptors TSA,
Vol, MR, and log P were calculated with a program
for SAR and quantitative structure—activity relation-
ship (QSAR) methods [24], and finally the topological
and three-dimensional descriptors were obtained with
aid of the 3d-weighted holistic invariant molecular
program [25]. In order to obtain the atomic charges,
the keyword CHELPG was chosen. This strategy was
used to make possible the derivation of the atomic
charges from the electrostatic potential. The electro-
static potential is obtained through the calculation of a
set of punctual atomic charges so that it represents the
possible best quantum molecular potential for a set of
points defined around the molecule [26].

2.4. Multivariate analysis

2.4.1. Principal components analysis

PCA [10,27] is widely used to simplify large data
sets in a way that patterns and relationships can be
readily recognized and understood. The underlying
purpose of the technique is the dimension reduction.

The method generates a new set of variables called
principal components, PCs, as linear combination of
all the initial variables so that the first new variable,
PC1, describes the largest variance in the data set, the
second new variable, PC2, must be chosen orthogonal
(uncorrelated) to the first one and in the direction to
describes as much variance left as possible and so on.

The initial data matrix, represented by X, is decom-
posed into two matrices, T and P where

X =TP! (1)

where T, known as ‘scores’ matrix, represents the
position of the samples in the new coordinate system.
The second matrix, P, is the ‘loadings’ matrix and
describes how the new axis, i.e. the PCs, are built
from the original variables. The samples are mapped
through scores and the variables by the loadings in the
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Table 2

Training set compounds’ more important molecular parameters

Compounds MS (au) — ' TSA (A)? CHIIA  BIC 2K Llv Tv ICsq (ng/mL)*
1° Artemisinin 8.792 442.440 0.411 0.773 4.038 4.64 9.098 1.0150
2° Artenilic acid 7.346 662.049 0.421 0.77 7.368 14.657 19.097 2.0818
3¢ Artemether 12.566 478.94 0.417 0.818 4.651 5.005 9.936 0.3008
4¢ 10.66 675.94 0.427 0.787 8.429 12.31 18.639 0.6968
5¢ 9.976 656.09 0.427 0.801 8.462 8.936 16.087 0.0938
6° 9.864 658.9 0.427 0.801 8.462 10.98 17.094 0.2265
7° 7.888 646.020 0.418 0.767 7.678 14.004 18.664 1.1475
8¢ 10.257 696.070 0.429 0.786 9.029 11.375 18.194 0.2134
9° 10.341 691.539 0.429 0.786 9.029 10.051 17.214 0.1437
10¢ 6.065 730.69 0.429 0.786 9.842 12.726 19.617 0.2297
11° 6.076 727.62 0.429 0.786 9.842 10.278 18.238 0.0487
12¢ 8.05 676.03 0.424 0.809 8.156 17.355 21.928 0.3368
13¢ 8.104 677.549 0.424 0.809 8.156 13.361 18.505 0.3353
14° 7.797 640.82 0.421 0.789 7.616 12.31 18.505 2.5350
15° 7.853 643.4 0.421 0.789 7.616 10.066 16.406 1.2308
16° 6.008 672.288 0.424 0.774 8.716 13.049 18.412 1.3470

* In vitro antimalarial activity of artemisinin derivatives against P. falciparum resistant to mefloquine.

® Low antimalarial activity.
¢ High antimalarial activity.

new low dimensional vector space defined by the prin-
cipal components.

2.4.2. Hierarchical cluster analysis

HCA [10] has become, together with principal
components, another important tool in multivariate
data analysis. Its primary purpose is to display the
data in such a way as to emphasize its natural clusters
and patterns in a two-dimensional space. The results
are presented in the form of dendograms. In HCA, the
distances between samples or variables are calculated
and compared through the similarity index which

Table 3

ranges from zero, i.e. no similarity and large distance
among samples, to one, for identical samples.

2.4.3. The K-nearest neighbors method

The KNN method [10,11] classifies the objects
based on distance comparison among them. The
multivariate Euclidean distances between every pair
of samples with known class membership is calcu-
lated. The closest K samples are used to build the
model. The optimal K is determined by crossvalida-
tion applied to the training set samples. The classifi-
cation of a test samples is determined based on the

Correlation matrix of the seven descriptors responsible for the classification into higher and lower antimalarial activity

Variables Variables

Variables MS TSA CHI1A BIC 2K Llv Tv

MS 1.0000 —0.4235 —0.0805 0.4851 —0.4075 —0.2346 —0.5025
TSA —0.4235 1.0000 0.8799 —0.0497 0.9873 0.4352 0.8723
CHI1A —0.0805 0.8799 1.0000 0.1753 0.9173 0.1762 0.6277
BIC 0.4851 —0.0497 0.1753 1.0000 —0.0730 —0.0806 —0.1061
2K —0.4075 0.9873 0.9173 —0.0730 1.0000 0.3388 0.8086
Llv —0.2346 0.4352 0.1762 —0.0806 0.3388 1.0000 0.7244
Tv —0.5025 0.8723 0.6277 —0.1061 0.8086 0.7244 1.0000




J.C. Pinheiro et al. / Journal of Molecular Structure (Theochem) 572 (2001) 35—44 41

27 .3
*
1 i ‘o
.90
s, 8
43
Q *12
S
ﬁ 0+ 010
+*
1
‘15
14
1
16
< <
1 o, 2
. 7
2 T T T T T T T
4 2 0 2
Factor1
°Bic
056-
°ms
0.4
°CHINA
o~
8
®
Y 024
<
¥ea
0.0
°Tv
0.2 ° Ly
T M T T T T 1
02 0.0 02 04
Factort

Fig. 3. (a) Plot of the first two PC score vectors (PC1 and PC2) for the dihydroartemisinin derivatives with antimalarial activity (Training Set).
The PC analysis leads to a separation in two groups: High activity (HA) and Low activity (LA). (b) Plot of the first two PC loading vectors (PC1
and PC2) for the seven descriptors responsible for the separation of the dihydroartemisinin derivatives (Training Set).

multivariate distance of this sample with respect to the 2.4.4. Soft independent modeling of class analogy
K samples in the training set. In this method no method
assumption is made about the size and shape of the The SIMCA method [10,12] builds principal

training set classes. components models for each class in the training
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Fig. 4. HCA for dihydroartemisinin derivatives (Training Set).

set. In this method, a multidimensional (determined
by the number of PCs necessary to describe the class)
box is built for each class, which means that the shape
and position of the samples in the classes are taken
into account. The classification of a test sample is
achieved by determining which space the sample
occupies. It can be a member of one, more than one
or none of the classes (boxes).

The multivariate analysis were performed with
PIROUETTE program [28].

3. Results and discussion

In order to give each variable equal weight in the
analysis before applying the PCA, HCA, KNN, and
SIMCA methods, each one of the variables was auto-
scaled. In a first step, HCA and PCA analysis were
carried out for these 16 compounds shown in Fig. 1
(Training Set). After several attempts to obtain a good
discrimination of the compounds in question into high
activity and low activity classes, the best separation
was obtained with a small set of variables. They are:
MS, TSA, Randic’s index, path 1 — molecular
connectivity (CHI1A), bond information index
(BIC), shape index based on paths of length 2 of

Kier (2K) [22], and the directional (related to mole-
cular size, dimension: axis 1 and weight: van der
Waals’ volume) and non-directional (related to linear
contribution to the total molecular size and weight:
van der Waals’ volume) 3D-WHIM indices (L1v
and Tv), respectively [23]. The data set can be see
in Table 2 together with the experimental activities.
Table 3 shows the correlation matrix of the seven

Table 4
The results of the multivariate methods for the compounds in Fig. 2
(Test Set) (HA = high activity and LA = low activity)

Compounds PCA KNN SIMCA
17 LA LA LA
18 LA HA LA
19 LA HA LA
20 HA HA LA
21 HA HA LA
22 HA HA HA
23 LA HA 0.0
24 LA LA LA
25 HA LA LA
26 LA LA LA
27 LA LA LA
28 HA HA HA
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descriptors responsible for the classification into
higher and lower antimalarial activity.

The results of the calculation the first three PCs
explained 92.097% of the total variance in the data
as follows: PC1 =57.257, PC2 =21.568,
PC3 =13.272%. The plots of the scores and
loadings for the first two PCs are shown in Fig. 3
From Fig. 3, we can see that PC2 discriminates
between HA-compounds: 3, 4, 5, 6, 9, 10, 11, 12,
and 13 and LA-compounds: 1, 2, 7, 14, 15, and 16.
Still in the Fig. 3 the compounds 1 and 3 due the
their structural features appear distant of the other
compounds of high activity and low activity,
respectively.

The results of the HCA analysis are similar to the
PCA analysis and are displayed in the dendogram
showed in Fig. 4 We can see that the two classes
(high activity and low activity) are the same obtained
by PCA (Fig. 3). The compounds 1 and 3 due to their
structural features (as mentioned before) form one
cluster and according to PCA analysis are classified
into low activity (compound 1) and high activity
(compound 3) classes.

Starting from the separation of the 16 compounds
(Training Set), we proposed the new 12 compounds
(Test Set) for analysis, for which the antimalarial
activity against P. falciparum resistant to mefloquine
are still unknown. With the application of the
PCA method, we obtained a classification into two
classes: High Activity (compounds: 20, 21, 22, 25,
and 28) and Low Activity (compounds: 17, 18, 19,
23, 24, 26, and 27).

In the construction of the KNN model were used six
nearest neighbors in the training set. With the applica-
tion of the KNN model for the test set also two classes
were predicted: HA (compounds: 18, 19, 20, 21, 22,
23, and 28) and LA (compounds: 17, 24, 25, 26, and
27).

The SIMCA model used two PCs for the low
activity class and three PCs for the high activity
class. The SIMCA model applied for the test set
also predicted two classes: HA (compounds: 22
and 28) and LA (compounds: 17, 18, 19, 20, 21,
24, 25, 26, and 27).

Two compounds were predicted as of high
activity by the three methods (compounds 22 and
28) and the results of this prediction are summarized
in Table 4.

4. Conclusions

The methods of multivariate analysis (PCA and
HCA) shows that the 16 Dihidroartemisinin deri-
vatives studied here can be classified into two
classes according to their degree of antimalarial
activity against P. falciparum resistant to meflo-
quine. The variables (descriptors) MS, TSA,
CHI1A, BIC, 2K, Llv, and Tv are those respon-
sible for the discrimination between the deriva-
tives with higher and lower antimalarial activity.
The construction of KNN and SIMCA models was
useful in the prediction of activity of new deriva-
tives against P. falciparum resistant to drug cited.
Among the 12 compounds tested, two have been
predicted as of high activity (compounds 22 and
28, Fig. 2).
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