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INTRODUCTION 

 
 Empirical calculation of carbon-carbon bond length in organic compounds, especially in aromatic 

hydrocarbons, is a tradicional subject of structural, theoretical and organic chemistry. For example, bond 

length is an important index of the aromatic character of the bond, of its corresponding ring or molecular 

fragment, or of the whole molecule [1-5]. Furthermore, the bond length can be used for calculation of the 

charge in donor-acceptor complexes and other quantitites [6,7]. Recent researches confirm mutual 

dependence of the covalent bond length and the hydrogen bond distance in crystaline state of organic 

compounds [8,9]. The problem of the bond length prediction is today interesting also in area of chemistry 

which deals with mathematical relations between the molecular structure of a compound and its physico-

chemical properties (QSPR, Quantitative Structure-Property Relationship) or biological activity (QSAR, 

Quantitative Structure-Activity Relationship), as is illustrated in some papers [10-14]. Theoretical approach 

for bond length prediction by means of statistical methods, specially chemometrics, requires a set of 

experimental values of bond lengths and other molecular parameters. Once these data are collected, it is 

possible to construct a mathematical model and apply to a case of a compound without known structure. 

Detailed description of a complete procedure follows in the text. One can ask the following: what is really 

the chemical bond in an aromatic molecule, and how its bond length can be calculated in an easy and fast 

way, without performing quantum-chemical and other complicated calculations? 

 To describe what has been done in terms of the mathematical relations which enable C-C bond 

calculation in planar benzenoid hydrocarbons, we must first to explain concepts like benzenoid system, data 

mining and chemometric regression methods. 

 A benzenoid system or simply benzenoid [15-17] is a delocalized π-electronic hydrocarbon system 

of benzene rings, which are mutually bound directly (fused) or indirectly (through a bond or group). In 

Figure 1 are the formulas of some benzenoid hydrocarbons with full name Planar Benzenoid Fused 

Polycyclic Aromatic Hydrocarbons (PB-PAHs) [18]. The long name says almost all: that they are fused, 

contain two or more benzolic hexagons (except benzene which is included due to statistical reasons), they are 

aromatic and planar (all the atoms are in the same plane). 
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Figure 1. There are twenty-two planar benzenoid hydrocarbons with one to fifteen hexagons, extracted from 
Cambridge Structural Database (version October 2001). The crystal structures of these aromatic systems 
satisfy strict conditions for data mining of crystallographic data. Each hydrocarbon is presented by one 
Kekulé structure, the number of Kekulé structures (K) and the number of symmetrically independent types of 
chemical bonds (C). 
 
 Data mining or “digging” in a data base is a searching and extraction of important information for 

research, that requires skil and persistency. To establish a model to calculate bond length in a benzenoid 
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hydrocarbon, we need experimental bond lengths determined with high accuracy. The commercial 

Cambridge Structural Database (CSD) [19,20] contains over 257 000 crystal structures of organic and 

organometallic compounds (version October 2002), from which 13% have metal-ligand π bonds. In this base 

it can be found approximately hundred different benzenoid systems, what is a very small percentage of a 

thousand known ones [15]. When the strict criteria of quality of the determined crystallographic structures 

are applied for data mining for benzenoids [18,21-23], many crystal structures must be thrown away. 

 Chemometrics [24-39] is a relatively new chemical area for analysis of chemical data, which has 

roots in statistical and mathematical methods applied in psychology, sociology and technics. Although it is 

widely used in instrumental analytical chemistry, more and more penetrates also into theoretical chemistry, 

QSAR/QSPR [27,28,30-38], and all other branches of pure and applied chemistry and chemical technology. 

In what chemometrics can help about our concrete problem, are the regression methods. In this sense, the 

bond length should be considered as a dependent variable y which is a linear function f of one or more 

independent variables x1, x2, x3, ... etc., what can be writtein in the general form y = f (x1, x1, x3,...). The 

independent variables are called descriptors, or simply variables. About them later on in the text. Let’s 

mention the three mostly used regression methods, which result in regression coefficients bi in a linear 

expansion  y = b0 + b1 x1 + b2 x1 +b3 x3 + ... Multiple Linear Regression (MLR) [27,29,31] is an inverse least 

squares method, an extension of usual linear regression. Principal Component Regression (PCR) 

[24,25,26,27,29] takes into account only that part of the original data which contains significant information, 

and treats it as MLR, while the rest is considered to be useless redundancy. Partial Lest Squares (PLS) [24-

27,29-31] as well as PCR extracts only the relevant information, but with the difference with respect to PCR 

in finding the best solution by an iterative procedure on all variables, dependent and independent ones. Both 

methods, PCR and PLS are based on Principal Component Analysis (PCA) [24-38], which produces new 

descriptors as linear combinations of the original ones. In this, the new descriptors – Principal Components 

(PCs) are mutually orthogonal what was not the case with the original descriptors, and they are arranged in 

descreasing order of percentual content of the original information. The Principal Components with small 

percentage are thrown away as not important. More details on the mentioned methods one can find in the 

recommended chemometric literature. 

 
HISTORY OF BOND LENGTH – BOND ORDER RELATIONSHIP IN BENZENOID 

HYDROCARBONS 

 
 As there were crystal structures of many compounds determined by X-ray diffraction in 1930s, it 

was possible to notice relations between various molecular characteristics for some class of compounds. One 

such relation is bond length – bond order, as it is illustrated in Figure 2 for the simplest C-C bonds [39]. In 

general, the relation is not linear, what can be proved today by quantum-mechanical ab initio calculations 

[3,40]. Nobel Prize Winner Linus Pauling (1901-1994) used the bond number (the bond multiplicity) as the 

bond order [16,41,42]. He has defined π bond order also (the Pauling π bond order, PP), which is equal to the 
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bond number reduced by one. [16,17,39,41]. PP is strictly defined as the ratio of the total number of Kekulé 

structures K to the number of Kekulé structures Kd in which the bond under study appears as formal double. 

With the increase of the number of benzolic hexagons in a molecule of a benzenoid, the number of 

symmetrically independent bonds does not increase necessarily (the reson for this is high molecular 

symmetry), but certainly K increases as well as the numbers Kd for many bonds. Pauling stated [42] that all 

Kekulé structures of a molecule can be drawn on a piece of paper for a few minutes up to an hour or two for 

the most complicated systems as the largest ones in Figure 1. But who has no skil in this, and does not 

recognize the symmetrically repeated Kekulé structures (which are in fact one and the same structure), can 

make a mistake easily. Theare are also other methods for determination of PP, as for example the Randić 

procedure [16,17,43], but they are also not more efficient than the Pauling’s. It would be the safest and the 

best way to use some program which calculates the PP numbers. Someone can make a question: why then to 

calculate PP when a molecule can be nicely modeled by a personal computer and its geometry optimized 

inside a few minutes by molecular mechanics or semi-empirical methods? Both these methods do not give 

good agreement with the experiment because they are not parametrized for our molecules but for some 

general set of molecules. The best are ab initio methods, but they are slow – the calculation can take from a 

few hours to some days, and even longer. It is necessary to test these methods for the proposed set of 

molecules and see which method and under which conditions is the best for the calculation of C-C bond 

lengths. Who does not have a quantum-chemical program, or is interested in ten or more molecules, or need 

to calculate only a few C-C bond lengths, can easily and fastly use an analytical equation of the type bond 

length-bond order. 

 
Figure 2. Diagram of the dependence of experimental C-C bond length on the Pauling π bond order for the 
simplest systems. It can be noticed easily that this dependence is not linear. It seems that the Pauling 
regression curve (logarithmic) better fits to the points than the theoretical curve of the harmonic potential, 
but none of them is perfect. 
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 In the 1930s, when the principles of resonance theory were established, bond lengths were 

determined by diffraction techniques with accuracy at the second digit in Å units (Å = 10-10 m). Pauling 

assumed that a delocalized C-C bond is a mixture of a single and double bonds, each of them behaving as a 

stretching harmonic oscillator. He derived theoretically [41,42] the curve of the harmonic potential for 

delocalized bond: d = dsing – 1,84 (dsing – ddoub) PP / (0,84 PP + 1) where d, dsing and ddoub are the lengths of 

delocalized, standard single and double C-C bonds, respectively. He was also the first one who used linear 

regression in logarithmic form [44]: d / Å = a + b log(PP + 1). Approximately at the same time Gordy [41] 

defined another type of regression for bond order prediction from the C-C bond length: P = a + b / d2, where 

P is a general type of bond order, and d is a general bond length. All these equations, including the inverse 

Gordy equation (where the bond length can be obtained from the bond order), can be found in various recent 

papers [3,4,7,16-18,21-23,36,46-51]. These papers differ from the original ones of Pauling and Gordy in that 

the number and the accuracy of crystal structures is greater, so the regression coefficients are different. The 

set of hydrocarbon molecules or carbon species as grafites or fullerenes which can be found in the CSD is 

growing continuosly. 

 In the 1970s appear the works of Herndon [50], Herndon and Párkányi [51] and Pauling [42] with 

larger sets of more accurate aromatic structures. Herndon used linear regression which had been already 

introduced by Pauling [39]. In 1990s our works were published in order to reparametrize this linear 

regression [18,21-23,46]. Data mining in the CSD database was performed, with limitation to a more 

homogeneous set of systems – the structures of planar benzenoid hydrocarbons with high accuracy. Bonds in 

non-planar benzenoids, especially in helicenes, are significantly influenced by intramolecular steric 

interactions, so they should be studied as a separate subject. Herdon and Párkányi had 13 benzenoid systems 

with a total of 100 symmetrically independent bonds (including non-benzenoids as butadien and graphite) 

[51], and Pauling only 9 sytems with 82 bonds [41]. Our data mining resulted at first time in 14 systems and 

124 bonds in 1995 [21], then in 16 systems and 147 bonds in 1996 [22], and in 22 systems and 223 bonds in 

2000 [18]. This last set is illustrated in Figures 1 and 3. As the accuracy of crystallographically determined 

bond lengths has been increased a few times with respect to that of 1930s, many effects have been 

discovered as for example: steric effects and the effects of intermolecular interactions on molecular structure, 

then crystal packing effects on molecular symmetry and geometry, substitution, isomerism and complexation 

effects on the geometry of molecular skeleton. The shortening of the bond lengths in crystal was noticed 

also, what is in fact caused by vibrations in crystal and a disandvantage of the X-ray diffraction (which 

locates centroids of the electron cloud instead of atomic nuclei). The relation bond length – bond order in 

Figure 3 is linear or curvilinear, being hard to decide which fits better due to pronounced dispersion of the 

data and narrow interval for PP. Our investigations confirmed that this relation is not better in statistical sense 

if having more molecules i.e. bonds, and the same is about compounds similar to benzenoids and which have 

aromatic C-C bonds [21-23,46]. It is worth to say that there are authors which instead of Pauling π bond 

order use Coulson, Hückel (from HMO calculations) and SCF (Self Consistent Field, from MO calculations) 
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bond orders [47,51]. There is high correlation between all these π bond orders, so none is preferred for bond 

length prediction. 

 
Figure 3. Diagram of the dependence of experimental C-C bond length on the Pauling π bond order for 
twenty-two planar benzenoid hydrocarbons from the CSD base of crystallographic data. It is hard to judge if 
the points are groupped along a line or a curve because the dispersion is high, and the interval for the bond 
order is just from 0 – 1. 
 
 In 1960s Stoicheff developed another approach for empirical prediction of a general C-C bond 

length, based on structural data from spectroscopy of small molecules [52]. He obtained an equation in the 

form d / Å = 1.299 + 0.040 n where n is the number of neighbouring carbon atoms which are directly bound 

to the carbons of the bond under consideration. In our interpretation of crystallographically determined bond 

lengths, this equation should be d / Å = 1.315 + 0.0384 n. In Table 1 are the experimental [53] and calculated 

bonds of formal single bonds. One should have in mind the hybridization of a carbon atom which determines 

the number of the neighbouring atoms, as well as the fact that every bond appears as formal single in some 

Kekulé structures. 

 Herdon and Párkárnyi [51] and Dewar and Gleicher [54] have pointed out that the length and the 

order of a chemical bond are not the only phenomena mutually related when the subject is the chemical 

bond. In our work [18] it was proved that the dispersion of points in Figure 3 is in accord with this fact, or 

by other words, it is necessary to include other quantitites in the mathematical equation. Some other 

investigations led to the same conclusion [22,46]. Very high correlation coefficient between experimental 

and calculated bond lengths is not always a good measure of the predictive quality of a mathematical model. 

In chemometrics, there are also other statistical parameters for judging the model’s validation, which are 

more sensitive than the correlation coefficient (see the recommended literature for this area). 
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Table 1. Experimental (dexp) and calculated (dcal) lengths of formal single C-C bonds (in units Å=10-10 
m) and deviation ∆∆∆∆ = dexp – dcal for different chemical neighbourhood n.The linear regression equation 
has form d / Å = 1.315 – 0.0384 n. The correlation coefficient is R = 0.967, and the mean absolute ∆∆∆∆ = 
0.009 Å, what is satisfactorily good with respect to the small data set. The carbon hybridization types 
are marked by indices: sp3, sp2, sp and ar (aromatic). To obtain the number n, it is necessary to 
perceive how many bonds on a carbon atom are still free taking into account its hybridization (1, 2 or 
3). 
 

Bond n dexp / Å dcal / Å ∆ / Å 

Csp3 – Csp3 6 1.530 1.545 -0.015 

Csp3 – Csp3 = C 5 1.507 1.507 0 

Csp3 – Car 5 1.513 1.507 0.006 

Csp3 – Csp ≡ C 4 1.466 1.469 -0.003 

C = Csp2 – Csp2 = C 4 1.460 1.460 -0.009 

C = Csp2 – Car 4 1.483 1.469 0.014 

Car – Car 4 1.490 1.460 0.030 

C = Csp2 – Csp ≡ C 3 1.431 1.430 0.001 

Car – Csp ≡ C 3 1.434 1.430 0.004 

C ≡ Csp – Csp ≡ C 2 1.377 1.390 -0.013 

 
 

THE CHEMOMETRIC APPROACH IN SOLVING THE PROBLEM 

 
 Our chemometric approach to find an equation which would be simple and in good agreement with 

experimental bond lengths considered the bond length as a function of more variables [18], analogously to a 

QSAR or QSPR investigation [27,28,30-38]. Besides PP other bond descriptors were defined: Pcr – a 

modified PP containing the crystal packing effects on C-C bond lengths (for details see ref. [18]), the number 

n, the number m – the total number of hexagons containing the carbons of a particular bond, and the number 

l – the number of carbon atoms which are directly bound to those atoms counted to obtain n. 

 Furthermore, MLR, PCR and PLS regression models were used for the set of descriptors (PP, Pcr, n, 

m, l) [18]. The regression results are compared with those from simple linear regression (LR), what can be 

seen in Table 2 where are some statistical parameters. It should be said that the Pauling harmonic and 

logarithmic equations, as well as the inverse Gordy equation, produced worse results than the LR. 

Besides already defined R and ∆, the other parameters are: Q – the correlation coefficient from validation, 

SEV – the Standard Error of Validation, and parameter T defined by the expression T = <|dexp – dcal| / σ> 

where σ is the experimental error of the bond length. The validation performed in our work [18] is a 

procedure where the bond length is obtained from the regression model which did not include this bond. 

Details about validation can be found in the recommended chemometric literature [24-28], as well as in our 

last works [18,30,31,46]. Validation of a regression model is very much important because it reveals if the 

models with high R and low ∆ are really good. It can be noticed in Table 2 that the PLS model II with two 
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Principal Components (2PC) is good enough for our practical needs. Inclusion of all 5PC (such PLS or PCR 

model is idential to the MLR model IV) does not give better model. On another side, simple models with as 

least as possible number of selected descriptors and PCs, are preferred. The models with descriptors (n, m, l) 

obviosuly could be better explored. Therefore, at this stage of research, it is necessary to include the total 

information contained in these descriptors, so we recommend MLR model VI for practical purposes. 

 
Table 2. Significant regression models for C-C bond length calculation in planar benzenoid 
hydrocarbons. The best models I, II and VI are given in the form of equation which is practical even 
for a pocket calculator. An exceptionally good model should be characterized by high R, Q > 0.90, 
small SEV, ∆∆∆∆ < 0.005 Å and T < 2.58. The aveage experimental error for the set from Figure 1 is 0.005 
Å. 
 

No. method descriptors R Q SEV / Å ∆ / Å T 

I LR PP 0.895 0.798 0.014 0.011 3.34 

II PLS (2PC) PP, Pcr, n, m, l 0.940 0.938 0.011 0.007 2.18 

III PCR (4PC) PP, Pcr, n, m, l 0.940 0.937 0.011 0.007 2.19 

IV MLR PP, Pcr, n, m, l 0.958 0.955 0.009 0.006 1.83 

V PLS (2PC) n, m, l 0.820 0.814 0.018 0.014 4.60 

VI MLR n, m, l 0.837 0.830 0.017 0.014 4.49 

Equation I:    d / Å = 1.468 – 0.147 PP 

Equation II:    d / Å = 1.431 – 0.060 PP – 0.063 Pcr + 0.006 n + 0.004 m +0.001 l 

Equation VI:    d / Å = 1.464 + 0.082 n + 0.072 m – 0.094 l 

 
 

 After obtaining the regression equations I, II and VI, we can illustrate their practical side by an 

example. Of course, this example can be generalized to the whole set of benzenoids from Figure 1. 

Benzenoid hydrocarbon 3,4-benzopyrene is the first from left, the fourth row in Figure 1, and has the largest 

number C of bonds. There are two important factors when comparing our equations with quantum-chemical 

calculations: CPU time and agreement with experiment. Molecular mechanics calculations with force fields 

MMFF94 and SYBIL, semi-empirical PM3, AM1, MNDO, as well as ab initio calculations HF, DFT 

(SVWN and B3LYP) with the basis set 6-31G** were performed by using program Titan program [55] for 

molecular graphics and modeling at personnal computer Pentium III (330 MHz, 128 KB memory). Bond 

descriptors (n, m, l) were calculated on the basis of the two-dimensional formula from Figure 1. Bond order 

PP was determined by Pauling count of Kekulé structures, and Pcr according to the rules for crystal packing 

effects [18]. When talking about CPU time, ab initio varied from 100-160 minutes, semi-empirical 7-15 

minutes, and the molecular mechanics methods only 2 – 4 minutes. On the other side, calculation of the bond 

descriptors and use of analytical equations lasted 15 – 30 minutes, and if using a pocket calculator it would 

be necessary 10 – 20 minutes more. When considering the quality of the models, comparison of all 

calculations was performed in two ways. In one case, a data matrix whose elements are bond lengths, was 
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constructed. Each column contained numbers obtained from the same method, including the experiment, so 

that the matrix dimensions are 24x12. The matrix was then treated by chemometric classificatory methods 

PCA and HCA (Hierarchical Cluster Analysis) [24-27,30-38]. In another case of the comparison of all 

results, the statistical parameters R, ∆ and T were calculated, and the matrix of dimensions 11x3 was 

constructed for the identical PCA-HCA procedure. Details on this type of analysis can be found in our last 

works [18,46]. Both comparisons showed the following: it is clear that the ab initio methods are the best, 

then follows equation II. The third place is shared between equation I and semi-empirical methods PM3 and 

AM1. At the fourth position is equation VI and MNDO. The methods of molecular mechanics are the worst 

ones. 

 The equation II has perspective even with respect to ab initio calculations. The CPU time of a 

quantum-chemical calculation increases with the third power of the number of atoms. The number of C-C 

bonds as well as the number of descriptor values increases approximately linearly with the number of carbon 

atoms. Equation VI has not reached yet semi-empirical methods, but can be used for fast and rough bond 

length prediction. Equation I obviously cannot be improved much in future. The advance of the analytical 

equations with respect to quantum-chemical calculations is in that the equations include quantities 

(descriptors) which are well defined and understandable to any chemist. 

 To reply on the question what is the chemical bond in a benzenoid hydrocarbon, we can say: the 

consequence of various phenomena, as follows from our analysis. At first point, it is the electron 

delocalization which defines the length of an aromatic bond, partially described by the π bond order. Then, 

here are integer parameters n, m, and l which reflect the effects of the close (chemical) neighbourhood as 

delocalization, then steric interactions, electronegativity and ionic contribution to the chemical bond [56]. 

The effects of the far neighbourhood can be considered as small influences of the crystal packing due to 

various C – H...H, H...H, C(π)...C(π) i C(π)...H intermolecular interactions [18]. 

 
CONCLUDING REMARKS 

 
 From the point of view of structural, theoretical and organic chemistry, the results shown by 

equations in Table 1 and Table 2 (I, II, VI) represent approximate or rather accurate solutions of the longly 

studied problem of bond length prediction for benzenoid hydrocarbons by empirical and simple theoretical 

methods. Chemometric approach in finding these equations clearly exhibits that the bond length in 

benzenoids depends on more quantities: the bond order, the chemical neighbourhood, and the effect of 

intermolecular interactions. Although some of the equations are as good as semi-empirical molecular orbital 

methods, this problem should be studied furthermore. 
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Abstract 
 
BOND LENGTH PREDICTION FOR BENZENOID HYDROCARBONS 

Márcia M. C. Ferreira, Rudolf Kiralj, Universidade Estadual de Campinas, Campinas, SP, 13084-971, 

Brazil 
 
Carbon-carbon bond length empirical prediction has started already in 1930s, based on considerable set of 

crystallographic structures. Later on it was applied to aromatic compounds by means of linear regression 

methods and analytical curves. A historical review on the subject is described in this work. The results of the 

authors’ research on bond length prediction for planar benzenoid hydrocarbons, as well as on application of 

chemometrics in this area, are presented also. The recent regression analysis by means of chemometric 

methods resulted in two important findings. First, benzenoid bond lengths in crystal are multivariate 

phenomenon closely related to bond orders, bond neighbourhood and crystal packing effects. Second, the 

established regression equations reach semi-empirical molecular orbital calculations, and could be further 

improved. 
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