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Abstract

Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaça) samples

by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal

component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin

and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the

geographical origin of coffee and the production mode (organic or conventional) of cachaça were not successful. Some differentiation was

suggested for the geographical origin of cachaça of three regions (Northeast, Central, and South), and for coffee samples, related to the

production mode. Clear separations were only obtained for differentiation between industrial and homemade cachaças, and between instant

soluble and roasted coffees.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Globalization has caused a revolution in the consumption

habits all over the world. As well as in the internal and

external markets, the improvement of the products quality,

the decisive aspect of commercial barriers, and expansion of

markets accentuate the pressures. The quality certification,

based on standards, patterns, and technical specifications,

will be the pre-requirement of any product. The search for

superior levels of quality, time, and competitiveness is a

constant concern of economic agencies, and in the agri-
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business sector, it could not be different. The national

producer has to be attentive on not losing market to other

countries.

Among the representative products of the Brazilian

agribusiness, two are prominent in a differentiated way:

coffee and sugar-cane spirit, denominated Brazilian

cachaça. The former for still highlighting Brazil as a

major world producer, consumer, and exporter, and the

latter, for waking up recently the interest on the increase

of its export front to the growing search by external

markets.

Coffee is the world most popular beverage after water,

with over 400 billion cups consumed annually [1]. It is one

of the most important agricultural products in the interna-

tional trade, putting into motion approximately US$35

billion per year and being supplanted only by petroleum

[2]. In 2004, the coffee industries estimate total sales–

internal market and exports–of approximately US$1.5
60 (2005) 717–724



Table 1

ICP OES operating conditions

RF generator 40 MHz

Power 1.3 kW

Plasma flow 15 l min�1

Auxiliary flow 1.5 l min�1

Nebulizer flow 0.7 l min�1

Replicates 3

Injector tube diameter 2.4 mm

Spray Chamber Sturman Masters

Nebulizer V-groove

Emission lines (nm) Al I 396.152, Ca II 396.847,

Cu II 213.598, Fe II 238.204,

K I 766.491, K 769.897, Mg II 280.270,

Mn II 257.610, Na I 589.592, Pb II 220.353,

S I 181.972, Se I 196.026, Si I 251.611,

Sn II 189.927, Sr II 421.552, Zn II 202.548
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billion [3]. In the case of cachaça, official and exclusive

denomination of the spirit distilled of sugar cane produced

in Brazil, it comes conquering new markets. With a

production of 1.5 billion liters/year, it generates profits of

US$700 million and an expected growth of 27% in the

exports in this year, with the European countries being the

largest importers [4].

Therefore, it is easy to understand the huge relevance of

the availability of suitable analytical methods to characterize

these products of great consumption for millions of people

worldwide. Additionally, the determination of geographical

origin of commodities and food products is becoming an

increasingly active research area, focused on both geo-

graphical authenticity and adulteration of foods [5]. Chem-

ical analyses in conjunction with pattern recognition

techniques provide interesting tools for the study of the

quality and origin of food products [6].

The objective of this study was to evaluate the

feasibility of using a multielement analysis combined

with pattern recognition tools, in order to contribute to

the development of the Brazilian agribusiness, supplying

important information regarding the identity and quality

of the national product. Thus, 48 samples of coffee and

156 samples of cachaça from different geographical

sources were selected and analyzed with relation to their

mineral content. The determination of Al, Ca, Cu, Fe, K,

Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn was carried

out by axial viewing inductively coupled plasma optical

emission spectrometry (ICP OES). Afterwards, pattern

recognition techniques were applied to characterize

samples with relation to the geographical origin and

production mode (industrial or homemade and organically

or conventionally produced).
2. Experimental

2.1. Instrumentation

An inductively coupled plasma optical emission spec-

trometer with axially viewed configuration (VISTA AX,

Varian, Mulgrave, Australia) was used for Al, Ca, Cu, Fe, K,

Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn determinations.

This equipment involves a simultaneous charge coupled

device (CCD) detector that allows readings from 167 to 785

nm. The pre-optical system was purged with Ar in order to

enable readings below 190 nm. The polychromator was

thermostatized at 34 8C and purged with argon. End-on-gas

interface was used to minimize interferences caused by

auto-absorption processes. A V-groove nebulizer and a

Sturman-Masters spray chamber were employed for sample

introduction. The operational parameters are described in

Table 1.

A microwave oven, model Ethos 1600 (Milestone,

Sorisole, Italy), equipped with 120 ml Teflon PFA vessels

was used for digestion of coffee samples. A centrifuge,
model HermLe Z 200 A (Labnet, Berlin, Germany), was

used for coffee samples extraction.

2.2. Reagents and samples

All solutions were prepared using analytical-grade

reagents and deionized water (Milli-Q water, 18 MV

cm, Millipore, Bedford, MA, USA). All glassware and

polypropylene flasks were washed with neutron soap,

soaked in 10% v/v nitric acid (Merck, Darmstadt,

Germany) and rinsed with deionized water prior to use.

Reference solutions were prepared by diluting stock

solutions containing 1000 Ag ml�1 of each element

(Tec-Lab, Hexis, São Paulo, SP, Brazil) with distilled-

deionized water in 8% v/v ethanol.

The data set used in the present study comprised 156

Brazilian cachaça samples and 48 coffee samples of

different Brazilian regions. Acquisition of samples was

accomplished in Brazilian markets based on the following

characteristics: homemade and industrial for cachaça sam-

ples, roasted and instant soluble for coffee samples, and

organically or conventionally produced for both types of

samples.

2.3. Sample preparation

Cachaça samples were diluted in water (1:5 v/v),

acidified to 0.014 mol l�1 with HNO3. Adopting this

dilution avoided problems of plasma extinction.

For the extraction of coffee samples, a mass of ap-

proximately 1.0 g was mixed with 10 ml boiling water and,

after 15 min, centrifuged at 4000 rpm for 6 min and the

supernatant was collected, acidified to 0.014 mol l�1 with

HNO3.

For the digestion procedure, a mass of about 0.25 g of

coffee samples was directly weighed in a PTFE digestion

vessel, 1 ml of H2O2 conc. and 3 ml of HNO3 conc. were

added, and the vessels were placed on the turntable. The

microwave oven was operated according to the parameters

listed in Table 2. The digestates were diluted to 25 ml with



Table 2

Microwave-assisted acid digestion: experimental parameters

Step Power (W) Time (min)

1 250 2

2 0 2

3 350 5

4 500 5

5 700 5

A.P. Fernandes et al. / Spectrochimica Acta Part B 60 (2005) 717–724 719
deionized water and the analytes were determined by ICP

OES.

2.4. Data analysis

Fifteen metals, Al, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se,

Si, Sn, Sr, and Zn, were selected as chemical descriptors. In

the coffee extracts or digestates, Sn did not present any

analytical signal and could not be determined. The same

was observed for Mn in cachaça samples. Each coffee or

cachaça sample was considered as an assembly of 14

variables (i.e., the contents of the metals), which constitute

their chemical descriptors. For coffee samples, a data matrix

of 14 columns and 96 rows was built, each duplicate

analysis being considered as one sample. Another data

matrix of 156 rows and 14 columns was built for cachaça

samples. These matrixes were used in the chemometric

calculations.

Data analysis was performed using the software Pirouette

2.7 (Infometrix, Seattle, WA). Pattern recognition methods

were applied to the data sets according to the following

discussion.

2.4.1. Data preprocessing

Proper data preparation is integral to a successful

multivariate analysis. It is often necessary to adjust a data

set before running a multivariate algorithm. When one

variable’s magnitude is much larger than others are, this

variable alone may dominate subsequent computations

based on variance or distance. In other words, the elements

that are in higher concentration would be the most

significant to the model. The data preprocessing used in

this study was the autoscaling, in which each variable (each

column of the data matrix) is mean centered and then

divided by its standard deviation.

2.4.2. Pattern recognition tools

Pattern recognition tools applied to data sets included

principal component analysis (PCA) as a visualization

method, and hierarchical cluster analysis (HCA) as an

unsupervised learning method [7]. In PCA the data matrix is

decomposed into scores and loadings matrices. The scores

vectors describe the relationship between the samples in the

model subspace and the loadings vectors describe the

importance of each descriptor within the model. It can

represent graphically intersample and intervariable relation-

ships and provides a way to reduce the dimensionality of the
data. Similarly to PCA, clustering of samples reveals

similarities among the samples while clustering of variables

pinpoints intervariable relationships [8]. The primary

purpose of clustering techniques is to present the data in

an approach that demonstrates the grouping in a multi-

dimensional space in such a way that all objects in a single

group have some natural relation to one another, and the

objects from different groups are somewhat different from

each other [9]. The HCA results presented in the form of a

dendrogram facilitate the visual recognition of such groups

[10].

The measurement of the similarity is based on the

squared Euclidean distance. The clustering method used was

the Ward’s method, which considers in each step the

heterogeneity or deviance (sum of the squares of the

distance of an object from the baricenter of the cluster) of

every possible cluster that can be created by linking two

existing clusters [11]. PCA results were validated by using

the cross-validation method. As the used methods are non-

parametric, they do not make suppositions regarding the

statistical distribution behind the data set, and then any

evaluation of the normal distribution of the data (Gaussian)

is necessary [12].
3. Results and discussion

3.1. Coffee analysis

Although the class of the samples was a priori known, a

preliminary study based on an unsupervised pattern

recognition method was applied to observe the structure of

the data sets. Thus, initially an HCA was applied on the

digested coffee samples data set to observe any natural

grouping feature. The resulting dendrogram is shown in Fig.

1. Two separated clusters appear, a bigger one containing

the roasted coffee samples and a smaller, at the bottom with

dots, containing the six instant soluble coffee samples

analyzed.

In order to assess this statement and visualize the data

structure, a PCA analysis was carried out and the results

depicted in Fig. 2. PCA demonstrated that a small number of

variables dominate the total data variability, as the three first

principal components (PCs) accounted for 76% of the total

variability. The first component is responsible for 37%, the

second accounts for 30%, and the third explains 9% of the

total information. A distinct visual clustering appears when

the data were displayed with respect to the first two

principal components, which was not surprising since the

first principal component accounts for the maximum

possible one-dimensional projection of the total variation

of the individual data points.

Instant soluble coffees are located at positive scores (1)

of PC2, well separated from roasted coffee samples with

null and negative PC2 scores (2). Descriptors such as K,

Mg, Na, and S were the features with highest positive



Fig. 1. HCA analysis applied to the differentiation between roasted and instant soluble coffee. Dots at the bottom show the instant soluble coffee group. Data

obtained from the digested coffee samples.
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loadings in PC2, while Cu and Zn presented the highest

negative loadings in this PC. Thus, instant soluble coffees

are generally well characterized by relatively high values of

K, Mg, Na, and S and low values of Cu and Zn. The

reciprocal is true for the roasted coffee group at the bottom

of the plot. Both types of coffee present mean contents of

the elements with null loadings in PC2, i.e., possess similar

amounts of the elements Al, Ca, Fe, Mn, Si, and Sr.

According to their proximity K, Mg, Na, and S gave the

same kind of information. The same can be mentioned about

the descriptors Cu and Zn. The three most discriminating

variables were K, Mg, and Zn. The results indicated that by

using only the descriptors K, Mg, and Zn, the coffee

samples could be classified in their correspondent industri-

alization type, roasted, or instant soluble coffee.

In PC1, one can see a third group (3) formed by two

roasted coffee samples (samples 9 and 10), which were

considered as outliers. These samples were identified later
1 

3 

(a) (b) 

2 

Fig. 2. PC1 versus PC2 (a) scores and (b) loadings plots of coffee samples showin

(1) instant soluble, (2) roasted and (3) outliers.
as low quality products, which contained a great amount of

peels, corn, and other strange materials. These samples

exhibited high concentrations of Al, Fe, and Si, and

therefore, have the highest positive scores in PC1.

A new classification of the coffee samples was assessed

by PCA. Now, the objective was the evaluation of the

mineral profiles of products originating from conventional

and organic production modes. This production procedure is

now in evidence for being based on ecological sustainable

practices and has been attracting a great consumer market in

spite of a superior mean price compared to that for

conventionally produced coffees.

Fig. 3 shows the scores and loadings scatter plots of PC1

versus PC3, which provided the best visualization of the

separation between the two groups of samples. The three

first principal components (PCs) accounted for 70% of the

total data variability. Two groups may be suggested based

on the distribution of samples along PC1, which explains
g differentiation between roasted and instant soluble coffee. Group legend:



Fig. 3. PC1 versus PC3 (a) scores and (b) loadings plots of coffee samples showing differentiation between production modes (organically or conventionally

produced). Group legend: (1) organically produced, (2) conventionally produced.
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most of the variability, around 45%. The second component

accounts for 15% and the third explains 10% of the total

information. One group, denoted as (1), with negative PC1

scores, composed by the organically produced coffees, and

another group (2) with scores located at the positive side of

PC1, characterized by the conventional coffees.

The PC1 loadings profile shows negative values for the

descriptor Na, indicating that higher amounts of this element

may characterize organically produced samples. In PC3, a

clear separation does not exist among the groups. However,

it can be pointed out that the coffees produced organically

can be characterized due to the higher amounts of Al and

Zn, indicated by their negative values of scores. However,

only by using the descriptor Na the coffee samples can be

classified in their correspondent production mode, organ-

ically or conventionally.

Attempts to correlate the metal content of coffee samples

with their geographical origin have been unsuccessful. This

may be related to the fact that industrialized Brazilian

coffees are blends of coffees from different regions, due to

seasonal effects, which changes the supplies around the

country during the year.

It should be pointed out that the same chemometric

results were obtained for the extracted coffee data set. It

means that further studies with a large number of samples

can be carried out using extracts and, consequently, micro-

wave-assisted digestions are unnecessary. This is advanta-

geous to decrease costs and speed-up frequency of analysis.

3.2. Cachaça analysis

Similarly to the approach adopted for coffee samples,

a preliminary study based on an unsupervised pattern

recognition method was applied to observe the structure

of the data matrix. Thus, a cluster analysis on the

cachaça samples data set was carried out in order to

observe any natural grouping feature. Fig. 4 shows the

resulting dendrogram, in which two distinct clusters

appears, a smaller one at the top (with dots) containing
the industrially produced samples and a bigger one,

containing the homemade cachaças. It can be seen that

there are some misclassified samples indicated by the

dots in the center of the biggest cluster, pointing out that

the classification between industrially produced and

homemade cachaças is not straightforward.

PCAwas carried out in order to assess this statement and

visualize the data structure and the results are depicted in

Fig. 5. Three first principal components accounted for 73%

of the total variability. The first component accounts for

40%, the second for 20%, and the third explains 13% of the

total information. In addition, a distinct visual clustering

appears when the data were displayed with respect to the

second and third PCs. Industrially produced cachaças are

located at negative PC2 scores (1), well separated from

homemade samples, which are located at null and positive

PC2 scores (2). Descriptors such as K, Mg, Ca, Cu, and Pb

were the features with highest positive PC2 loadings, while

Na and Si presented the highest negative loadings in this

PC. Thus, homemade cachaças are generally well charac-

terized by relatively high values of K, Mg, Ca, Cu, and Pb,

and low values of Na and Si. The reciprocal is true for the

industrially produced group. Both types of samples pre-

sented mean contents of the other elements with loadings

close to zero in PC2.

The PCA indicated a differentiation based on Cu and Pb,

because the remaining descriptors are constituted of

common macroelements. The great relative amount of

copper in the homemade cachaças is caused by the use of

copper stills in their production process. According to the

Brazilian legislation, the maximum Cu content allowed in

cachaça is 10.0 mg l�1 [13]. The careless cleaning of the

copper apparatus after the distillation process is probably the

main cause of high Cu concentration in homemade products

[14]. The Pb content may also be related to the lack of

proper process control in the homemade production. It

should also be mentioned that Pb is a common contaminant

found in the production of Cu metal. These cachaças

containing measurable amounts of Pb are not mass-



Fig. 4. HCA analysis applied to the differentiation between homemade and industrial cachaça. Dot points at the top and center show the industrial cachaça

group.
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produced and are mainly consumed near to their production

area.

On the other hand, in the industrial production process,

the stills are made of stainless steel and the whole process is

accomplished at a constant flow-rate, generating product

standardization.

Additionally, homemade cachaça production is not based

on a rigorous quality control in most of the stills spread over

the country. The use of Cu stills condensers is recommended

because this metal acts as a catalyst, favoring the formation

of volatile components in the final product (aromas and

bouquets), and improving the quality of cachaças. This

artifice is also used in many column distilleries in Brazil.

As indicated by HCA analysis, some misclassified

industrially produced samples were found inside the

homemade group, located next null values on PC2. This

aspect shows that the great majority of samples possess

relative homogeneity related to the mineral chemical
Fig. 5. PC2 versus PC3 (a) scores and (b) loadings plots of cachaça samples showin

legend: (1) industrial, (2) homemade.
composition, showing an evolution towards national

product standardization.

Further, a new classification of samples was evaluated

based on PCA analysis. At this time, the objective was to

correlate the mineral profile with the geographical origin

through chemometrics. Cachaça samples were collected

from 15 different states of the Brazilian federation.

Preliminary analyses accomplished in the attempt of

classifying the samples according to their origin (15 classes)

were not successful. This can be related to the chemical

homogeneity of the samples, as already pointed out.

However, when the number of classes was reduced to three

according to the main geographical regions, a relative

separation among the groups was obtained, as it can be seen

in Fig. 6. Class number 1 is constituted by samples from the

following states: Maranhão, Piauı́, Ceará, Alagoas, Pernam-

buco, Paraı́ba, and Bahia, denominated as the Northeast

region. Class number 2 is constituted by samples from the
g differentiation between production types (homemade or industrial). Group



Fig. 6. PC1 versus PC2 (a) scores and (b) loadings plots of cachaça samples showing differentiation by sample origin (Northeast, Central and South). Group

legend: (1) Northeast, (2) Central, and (3) South.
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following states: Goiás, Minas Gerais, Espı́rito Santo, and

Rio de Janeiro, denominated as the Central region. Finally,

class number 3 is constituted by samples from the following

states: São Paulo, Paraná, Santa Catarina, and Rio Grande

do Sul, denominated as the South region.

In this case, the three first principal components

accounted only for 56% of the total variability, showing a

modest visual clustering of data. The first component

accounts only for 29%, being the second responsible for

17%, and the third explains 10% of the total data

information. Three groups may be suggested based on the

distribution of samples along PC1. The first group with

negative PC1 scores (1), composed by the cachaças from

Northeast region; another group with scores located near

null values of PC1 (2), characterized by the Central region

cachaças, and a third one located at the positive side of PC1,

characterized by the cachaças produced in the South region.

The second group was better characterized on PC2, due to

the major part of the samples that possesses positive scores.

PC1 loadings profile shows negative values for the
Fig. 7. HCA analysis applied to the differentiation by sample origin (Northeast
descriptors Cu and Pb and highest positive loadings for

the descriptors Na, Si, Ca, Mg, and K. Consequently,

Northeast samples may be characterized by relative high

values of Cu and Pb, and low values of Na, Si, Ca, Mg, and

K. The reciprocal is true for the South group. Central group

presents mean contents of these elements and relative higher

amounts of Al and Zn with loadings next null in PC1. PC2

scores profile shows the apparent separation of Central

group from the others and loadings in that same PC

characterize this group as possessing relatively higher

amounts of Al, K, and Zn.

The obtained classifications are related to the soil type in

which the sugar cane was cultivated, being the Northeast the

most separated group, which also has the most different soil

compared to those from other Brazilian regions.

A cluster analysis was accomplished to verify if the PCA

results were plausible. Fig. 7 illustrates the dendrogram

obtained for the geographical origin study, which shows the

presence of two groups with no clear separation (similarity

indices around 0.2 or 0.3) demonstrating the homogeneity
, Central, and South). Dot points at the center show the northeast group.
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presented in PCA analysis. The dots point to the Northeast

group samples showing the presence of other misclassified

samples in this group as illustrated by PCA analysis.

It should also be pointed out that attempts to

correlate metal content of cachaças with their production

mode (organically or conventionally produced) were not

successful.

PCA and HCAwere used here mainly to explore the data

and visualize the trends in samples based upon the selected

variables. They were not used to make models and

predictions (unsupervised pattern recognition methods).

After showing that the selected variables are able to fairly

discriminate between cachaças according to their geo-

graphical origin, the supervised pattern recognition method

KNN (Kth Nearest Neighbors) was used to build a

classification model [12]. Classification with KNN is based

on distance (multivariate Euclidean distance) comparison

among samples. The distance between every pair of samples

is calculated. The predicted class of a test compound is

determined based on the distance of this sample with respect

to the closest K samples in the set. Each of the K nearest

samples is chosen to bvoteQ once for its class. The class

receiving the highest number of votes is assigned to that

sample. Using four nearest neighbors, the predicted classes

were compared with the true class memberships giving a

success rate of 84.6% (i.e., 84.6% of the cachaça samples

were found to be classified correctly).
4. Conclusions

According to the results, pattern recognition analyses

were able to differentiate some important features in coffee

and cachaça samples based on their metal contents. For

coffee samples it was possible the differentiation between

instant soluble and roasted coffee, the latter being charac-

terized by greater amounts of Cu and Zn, while the instant

soluble presented greater contents of Na, Mg, K, and S. It

was also possible for the classification of samples according

to the production mode, being Na the most significant

chemical descriptor for organically produced samples,

which also presented greater amounts of Al and Zn.

Separation of samples by their geographical origin was

not possible due to the fact that coffees are industrialized as

mixtures of different regions (blends), as a result of the

variable raw material offer around the country related to the

seasonal climatic effects. For cachaça samples, homogeneity

among samples was observed, indicating a road towards

standardization of the final product used either for internal

consumption or for exportation. In spite of that, a clear

differentiation was obtained between the industrially pro-

duced and homemade samples, with the elements Ca, Mg,

K, Cu, and Pb the ones that best described the homemade

samples, while Na and Si were the main factors for

characterization of the industrially produced samples. The

presence of Cu and Pb in measurable amounts indicates the
need for a better quality control for some homemade

cachaças. A trend was observed towards the classification

according to the origin. Three groups, denominated as

Northeast, Central, and South, were identified. The first

group was the most differentiated due to the higher contents

of Cu and Pb and, lower ones of Na, Si, Ca, and Mg. The

opposite was observed for samples produced in the South,

while samples of the Central region presented mean

amounts of those elements and greater concentrations of

Al, K, and Zn. The correlation between metal contents and

production mode of cachaça (organic or conventional) was

not corroborated by experimental data.
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