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bstract

In this work, the development of a robust spectroscopic procedure for determining, simultaneously and non-destructively, relevant quality
arameters of processed tomato products (total and soluble solids, total acidity, total sugars, glucose and fructose), is described.

Samples of tomato concentrate products with total solids content ranging from 6.9 to 35.9% were collected from Latin America, the US and
urope and NIR spectra were acquired in the 4000–10,000 cm−1 region. The original spectra were pre-processed by mean-smoothing or by Fourier
lter, followed by multiplicative signal correction (MSC) or derivatives. Partial least squares (PLS2 and PLS1) models were built and their predictive
bilities were compared through the RMSEP of external validation.
The PLS2 regression had better predictive abilities for four out of the six properties under study, namely total solids, total sugars, glucose and
ructose. Besides, the model was less complex than the PLS1 models in the sense that only four factors were demanded whilst from 4 to 11 factors
ere necessary for building the PLS1 models. The standard error of prediction (SEP%) of the PLS2 model for each property was: total solids,
.67; soluble solids, 1.14; total acidity, 9.60; total sugar, 18.69; glucose, 11.60; and fructose, 13.45.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Tomato is considerable relevant in the global agricultural
arket. It is the second most consumed vegetable worldwide,

he first being potato [1]. In 2005, more than 30 million tonnes
f tomato in natura were produced [2], from which about 85%
ere used for manufacturing industrialised products as tomato
aste and sauces [3].

The fruit is mainly composed of water, tomato solids—
oluble and insoluble, organic acids (mostly citric acid) and
icronutrients such as carotenoids and vitamins A and C. Sol-

ble solids are mainly sugars (sucrose and fructose) and salts,

nd are traditionally expressed as degrees Brix (◦Brix) [1,4,5].
nsoluble solids are mainly constituted of fibres, like cellulose
nd pectin. Usually, excluding seeds and skin, tomato presents

∗ Corresponding author. Tel.: +55 19 3521 3102; fax: +55 19 3521 3023.
E-mail addresses: andre.k.pedro@unilever.com (A.M.K. Pedro),
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.5–8.5% of total solids, depending on the variety, soil and
limate conditions [1].

While tomato solids are relevant because they dictate the fac-
ory yield—the higher the amount of tomato solids, the less
ruit is needed to produce processed tomato products, the rel-
tive amounts of sugars and acids define the taste of the final
oncentrate tomato product, thus largely determining consumer
reference [1,4].

Despite the relevance of these attributes for the food industry,
heir quantification is still time- and labour-consuming: soluble
olids are easily determined by refractometry, but total solids
re quantified by oven drying under vacuum, a procedure which
akes about 4 h. Total acidity is usually determined by titration
sing phenolphthalein as indicator, but the accurate determi-
ation of the end-point is difficult due to the tomato colour.
ugars are individually determined by HPLC, a technique that

emands a considerable amount of organic solvents. In addition
o that, the analysis is time- and labour-consuming in the sense
hat a thorough cleaning step is needed prior to the analysis
1,4–6].

mailto:andre.k.pedro@unilever.com
mailto:marcia@iqm.unicamp.br
dx.doi.org/10.1016/j.aca.2007.03.036
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For solving analytical problems like the ones stated above,
hemists have allied fast and non-destructive techniques, with
mphasis to the NIR spectroscopy and chemometrical methods
f calibration. Food chemistry was, indeed, one of the most ben-
fited fields by the use of NIR spectroscopy for the determination
f a series of properties in complex matrices [7–12]. The very
rst publication on tomato quality parameters is due to Hong and
sou [13]. After that, Goula and Adamopoulos [14] have deter-
ined moisture, sugars, total acidity, salt and protein in tomato

roducts and Jha and Matsuoka [15] have calibrated the acid/brix
atio of various tomato juices. More recently, Pedro and Ferreira
16] have developed a PLS calibration model for determining
olids (total and soluble), lycopene and �-carotene, important
icronutrients of tomato products [17–19], using NIR spec-

roscopy. Besides, fast and reliable techniques are of extreme
alue when shelf-life studies need to be conducted for launching
ew tomato products into the market [20,21].

The most popular calibration method in chemometrics is the
artial least squares (PLS) regression. The main advantage of
LS is that it can deal with strongly correlated data – which is
sually the case in spectroscopy – by performing the calibration
ver latent variables (or factors) that are defined as linear com-
inations of the original variables. These factors are extracted
n such a way that they have the maximum covariance with the
roperty of interest [22,23].

When several dependent variables are available for cali-
ration, two approaches can be used in PLS regression: the
roperties can be calibrated for one at a time – using the algo-
ithm known as PLS1 – or, alternatively, they can all be calibrated
t once (PLS2). In PLS1, one set of factors is needed for each
alibration model individually, whilst in PLS2 a single set of
actors is extracted. Whilst the factors in PLS2 are obtained in a
ingle execution of the calculation routine, PLS1 usually gives
ore precise models [22,23]. Nevertheless, PLS2 gives mod-

ls with similar predictive abilities to PLS1 when the dependent
ariables are strongly correlated [22,24]. Furthermore, the PLS2
egression is especially advantageous when dependent variables
hat can be determined quite precisely are put together with prop-
rties that can only be quantified less precisely by their reference
ethods. In this case, PLS2 tends to give calibration models that

resent, in general, best predictive abilities than those given by
he PLS1 procedure [22].

The main objective of this work is to develop a robust
nalytical procedure for determining, simultaneously and non-
estructively, important parameters of industrialized tomato
roducts using NIR spectroscopy and PLS2 regression. The pre-
ictive ability of the final PLS2 model is also compared with
hose obtained by individual PLS1 models for each property.

. Experimental

Forty-two samples of tomato concentrate products with total
olids content ranging from 6.9 to 35.9% (6.8–31.1◦Brix, respec-

ively) were collected in Latin America (Brazil and Argentina),
he US and Europe (the Netherlands, Spain, Italy and Greece).
hese samples presented a reasonable range of variation for
uilding suitable calibration models for the properties of interest.

n
s
F
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As tomato products are quite sensitive to moulding, the
eference analysis and spectra acquisition were performed
mmediately after opening the samples.

.1. Reference analyses

Total solids (%) were determined in triplicate by oven-drying
70 ◦C) using a Fanem EV8 oven (Fanem Co., São Paulo, Brazil)
nder vacuum (∼150 mmHg absolute pressure) produced by an
dwards E2M8 vacuum pump. Approximately, 3 g of sample
ere weighted in aluminium capsules with 0.6 g of diatoma-

eous earth (Merck Cellite® 281) and kept in the oven until
onstant weight (∼4 h).

Soluble solids were determined in duplicate at room tem-
erature by using an Abbe bench-top refractometer (American
ptical), with 0.1◦Brix accuracy.
Total acidity (%citric acid) was quantified using a Metrohm

02 automatic titrator in MET (monotonic equivalence point
itration) mode and a combined pH electrode (Metrohm
.0232.100). Titrating solution was NaOH 0.1 mol L−1 (Merck
.09141.1000).

Sugars (sucrose, fructose and glucose) were determined in
uplicate by using a Shimatzu HPLC (Shimadzu Co., Kyoto,
apan) equipped with a CTO-10A column oven, a Sil-10A auto-
atic injector, SPD-10AV pumps and a RID-6A refractive index

etector. Separation was achieved with a Shodex NH2P-50 4E
5 �m, 25 cm × 0.46 cm) column with a Shodex NH2P-50G
olumn guard (4.6 mm × 10 mm). Mobile phase was acetoni-
rile:water (75:25), isocratic at 1 mL min−1. Sigma–Aldrich
tandards (S8501 for sucrose, D9434 for glucose and F9048
or fructose) were used for building calibration curves. Tomato
roducts were diluted at 5% and clarified with 10 mL of each of
he Karenz reagents (K4Fe(CN)6 0.25 mol L−1 and zinc acetate
mol L−1). Injection volume was 5 �L.

.2. NIR spectra acquisition

A suitable amount of sample was filled into the bottom
f a glass Petri dish (Schott 23 755 48 05), and readings
ere performed in a Büchi NIRLab N-200 spectrometer (Büchi
abortechnik AG, Postfach) equipped with a MSC-100 diffuse

eflectance cell with sample rotation system. Besides promoting
better sampling for spectra acquisition, this rotating system

lso prevents local heating of the sample by the infrared radi-
tion. Three spectra of each sample were collected, each one
sing 100 scans in the 4000–10,000 cm−1 range (4 cm−1 of
esolution), at room temperature (20–25 ◦C).

.3. Multivariate calibration

In this work, vectors are represented by bold lower case,
atrices by bold upper case, scalars by italic lower case letters

nd sequences by subscripts.

Spectra were pre-processed in order to remove or reduce

oise, offset and/or bias, where offset was defined as a con-
tant drift and bias as constant slope along the baseline [22,24].
or reducing noise and offset, a mean-smoother with windows
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ig. 1. Fourier smoothing of a generic signal with arbitrary units: (a) noisy peak;
b) a Gaussian convolution function (dashed line) is applied to the interferogram
solid line) in order to remove noisy high-frequency features; (c) smoothed peak.

f different sizes followed by multiplicative signal correction
MSC), was applied [22,24]. Alternatively, a Fourier filter with
aussian convolution functions of several widths (w in Eq. (1))
as applied (Fig. 1), followed by MSC and first- or second-
erivatives according to the algorithm described by Saviszky
nd Golay [22,24,25].
(x) = e[−(x−x)2/w2] (1)

The two partial least squares approaches (PLS2 and PLS1)
ere used for building calibration models and the Y-block was

[

R

ig. 2. Leverage vs. studentized residuals chart. The horizontal lines represent
tudentized residuals with 95% significance while the vertical line represents
he critical leverage value.

utoscaled in the PLS2 calibrations. Cross-validation following
he leave-one-out procedure was performed in order to define the
ptimum number of factors to be kept in the models (through
MSECV). For detecting outliers, leverage (Eq. (2)) versus stu-
entized residuals (Eq. (4)) charts (Fig. 2) were built. Samples
resenting high-studentized residuals and leverage values above
critical value (Eq. (5)) were considered outliers and removed

rom the calibration set [22–24,26].

i = 1

Nc
+ (xi − x̄)(XTX)

−1
(xi − x̄)T (2)

resci =
√

(yi − ŷi)2

(Nc − 1)(1 − hi)2 (3)

Ri = yi − ŷi

Lresci

√
(1 − hi)

(4)

crit = 3k

Nc
(5)

here hi corresponds to the leverage value of the i-th sample;
to the scores matrix for the whole calibration set; ti to the

ector of scores of object i; Nc to the number of samples in the
alibration set; Lresci corresponds to the residual for the i-th
ample, standardized by its leverage value; SRi stands for the
tudentized residual; yi and ŷi are, respectively, the measured
nd the estimated values of property y for the i-th sample; hcrit
orresponds to the critical leverage; and k is the number of factors
r latent variables.

Seven samples were separated for external validation and the
ther 35 constituted the calibration set. The PLS2-model with
he best predictive ability was selected according to the pooled-
MSEP (RMSEPp, refer to Eq. (6)) and the pooled rval (Eq. (7))

22–24]:
MSEPp =
√∑J

j=1
∑Nv

i=1(yij − ŷij)2

J × Nv
(6)
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considerably changed. Regarding the Fourier-filter smoothing, a
width of 17 points produced the best PLS2 calibrations, the argu-
ments being similar to those stated for the average-smoothing
procedure.
24 A.M.K. Pedro, M.M.C. Ferreira / Ana

val,p =
∑J

j=1
∑Nv

i=1(yij − ŷij)2√
s2(Y) × s2(Ŷ)

(7)

n which RMSEPp is the pooled root mean squared error of
rediction, rval,p the pooled correlation coefficient between the
stimated and the predicted values, s2(Y) and s2(Ŷ), respec-
ively, are the pooled variances of the measured and predicted
alues for the properties under study, Nv is the number of sam-
les in the validation set and J is the number of properties being
alibrated by the PLS2 regression.

The performance of the models obtained with the PLS1
egression was assessed using the RMSEP and rval, where the
ummations in j in Eqs. (6) and (7) were dropped [22–24].

. Results and discussion

Fig. 3a shows the original spectra collected for samples pre-
enting low (solid lines) and high (dashed lines) amounts of
omato solids. Considerable noise can be seen in the regions

−1
etween 4000–5500 and 6300–7100 cm , especially in the
pectra of samples having low amounts of tomato solids. For
emoving noise, average-smoothing and Fourier filters were
pplied.

ig. 3. (a) Original spectra and (b) smoothed spectra. The solid and dashed lines
epresent, respectively, samples with low and high amounts of tomato solids.

F
1

Chimica Acta 595 (2007) 221–227

The best window for average-smoothing was determined to
e of 50 points (Fig. 3b) in the sense that it gave models with
etter predictive abilities than those built using other windows. It
ould be observed that below this limit the spectra were still pre-
enting noise, whereas above 50 points their original shapes were
ig. 4. Spectra pre-processing: (a) MSC; (b) first- and (c) second-derivative after
7-points Fourier-filter smoothing.
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Table 1
Predictive abilities and number of factors of the PLS2 models

Pre-Processing # of Factors RMSECV RMSEPp rval,p

Smoothing Offset and/or bias removal

None None 8 1.11 1.09 0.970
MSC 5 0.89 0.94 0.979
1st-derivative 9 1.32 1.35 0.957
2nd-derivative 9 2.02 2.42 0.841

Average smoothing None 8 0.88 0.89 0.981
MSC 4 0.83 0.83 0.982
1st-derivative 9 1.06 1.19 0.971
2nd-derivative 9 2.12 2.15 0.856

Fourier filter None 8 0.84 0.83 0.982
MSC 4 0.82 0.83 0.982
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Calibration models were built for each property individually
using PLS1 regression as well. Table 2 shows a comparison
between the best model obtained using PLS2 (50-point average
1st-derivative 7
2nd-derivative 7

Consistent baseline offsets and bias were present in the spec-
ra as well. These are quite common features in NIR spectra
cquired by diffuse reflectance techniques [27,28]. Nevertheless,
t was noticed that the offset presented a significant correlation
ith the amount of solids in the samples (average r = 0.81). This
ight be due to the summation of (a) differences in the path

ength of the infrared radiation, because, the lower the concen-
ration of particulate material, the deeper the light penetrated
nto the sample, and (b) due to differences in the scatter profile
f the samples and the reference during the reflectance measure-
ents. However, whatever the causes are, these offset and bias

sually produce calibration models which require a larger num-
er of factors or with lower predictive abilities (higher RMSEP),
nd thus, it is usually good practice in chemometrics to remove
r reduce these features.

Fig. 4a shows that MSC has effectively reduced the off-
et originally present in the spectra, but bias was still present.
or removing bias, derivatives were applied after Fourier-
lter smoothing: while the first-derivative completely removes
ffset—it only transforms the bias into a constant term (notice,
n Fig. 4b, that the baseline in the 9000–9600 cm−1 region does
ot tend to zero), the second-derivative removes both, offset and
ias. However, as the derivatives are numerically calculated as
ifferences of the intensities in (usually constant) intervals of
ave numbers, they have the detrimental effect of reducing the

ignal-to-noise ratio, especially when applied to noisy spectra
22,24]. This effect can be seen in Fig. 4c, which shows the
econd-derivative of the Fourier-filter smoothed spectra.

Table 1 shows the PLS2 models which presented the best pre-
ictive abilities (RMSEPp and rval,p) within each pre-processing
echnique. No outliers were found in any calibration. The models
hich presented the lowest RMSEPp and highest rval,p values
ere obtained by pre-processing the spectra using MSC after

moothing, both techniques – average-smoothing and Fourier
lter – giving similar results.
Nevertheless, despite both smoothing procedures increase
onsiderably the signal-to-noise ratio without reducing the
mount of information in the spectra, Fig. 5 shows that the
ourier filter was more effective on smoothing the spectra than

F
r
T

0.99 0.93 0.978
1.08 1.00 0.971

he average-smoothing technique, and this difference was par-
icularly relevant for the calibrations built with spectra using
erivatives as pre-processing. This was due to the fact that,
hile the former largely reduces the high frequency signals from

he interferogram itself, the latter is only based on averages of
he (approximately) randomly distributed spectral points in the
oisy regions.

The models obtained with derivatives were more complex
in the sense that a larger number of factors were required for

uilding up the calibration models – and presented lower predic-
ive abilities than those obtained with spectra pre-processed by

SC. Despite the Fourier filter being more effective on reduc-
ng noise from the original spectra, more factors were needed
or accommodating the noise re-inserted into the spectra by the
erivatives. This result is in accordance with those previously
eported [16], although a different smoothing procedure was
pplied.
ig. 5. Differences of the smoothing procedures. The dashed and solid lines rep-
esent, respectively, the same Fourier-filtered and average-smoothed spectrum.
he dashed line was shifted for clarity.
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Table 2
Comparison between models with the best predictive abilities built using PLS2 and PLS1

Property PLS2 (four factors) PLS1

RMSEP rval Factors RMSEP rval

Total solids (%) 0.63 0.999 8 0.81 0.998
Soluble solids (%) 0.68 0.999 9 0.35 0.999
Total acidity (%citric acid) 0.22 0.970 10 0.21 0.974
Total sugar (%) 1.96 0.962 6 2.19 0.943
Glucose (%) 0.54 0.991 6 0.59 0.990
Fructose (%) 0.88 0.973 4 0.93 0.967

Table 3
Correlation coefficients of the properties under study

Total solids Soluble solids Total acidity Total sugars Glucose Fructose

Total solids 1.000 0.995 0.796 0.746 0.916 0.897
Soluble solids 1.000 0.791 0.750 0.902 0.897
Acidity 1.000 0.550 0.646 0.624
T
G
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otal sugars
lucose
ructose

moothing followed by MSC) and those which presented the
est predictive abilities using PLS1 for each property. It can
e seen that PLS2 presented better predictive abilities for four
ut of the six properties under study, namely total solids, total
ugar, sucrose and fructose. PLS1 yielded models with better
redictive abilities for soluble solids and total acidity, but with
odels which demanded a larger number of factors.
PLS2 regression resulted in models with better predictive
bilities than most of the PLS1 models because of a combination
f features of this specific data set. Firstly, the properties under
tudy were strongly correlated, as shown in Table 3 and, sec-
ndly, all variables presented high correlation with total solids,

a
p
5
d

able 4
easured and predicted values, and standard errors of prediction (SEP) for the indivi

ample Total solids (%) (calibration range:
6.94–35.96%)

Soluble solids (%)
6.8–31.1%)

Measured Predicted SEP (%) Measured P

8.23 7.92 3.72 7.8
19.32 19.72 2.06 18.3 1
16.92 16.72 1.19 16.8 1
19.97 19.82 0.77 19.1 1
25.74 27.13 5.39 25.4 2

9.69 9.86 1.69 9.3
14.76 14.19 3.87 14.0 1

ample Total sugars (%) (calibration range:
0.87–17.73%)

Fructose (%) (cali
0.92–9.55%)

Measured Predicted SEP (%) Measured P

4.45 5.41 21.60 1.71 1
4.89 6.00 22.70 3.96 3
4.12 3.08 25.24 3.15 3
4.75 4.09 13.80 5.22 4

13.99 16.40 17.23 6.73 6
4.18 3.20 23.40 1.78 1
3.24 3.46 6.86 3.33 3
1.000 0.750 0.859
1.000 0.935

1.000

property that could be determined quite accurately by its ref-
rence method.

Table 4 shows the measured and predicted values, as well
s the standard errors of prediction for the seven samples used
n the external validation. The errors are within those obtained
y the reference methods for total and soluble solids and are
omparable with results previously reported for NIR analysis
16]. However, they are slightly higher for sugars and consider-

bly higher for total acidity. As total acidity was determined by
otentiometric titration, its standard error is usually smaller than
%. The standard errors for sugar are usually within 10–15%,
ue to the sample preparation step. The larger error of prediction

dual samples of the validation set

(calibration range: Total acidity (%) (calibration range:
0.28–2.46%)

redicted SEP (%) Measured Predicted SEP (%)

7.8 0.39 0.36 0.32 11.11
7.9 1.83 0.78 0.80 2.56
6.7 0.21 0.51 0.57 11.64
9.5 2.34 1.20 1.30 9.16
5.5 0.34 1.26 1.10 12.39
9.4 0.84 0.66 0.59 10.66
3.7 2.09 0.88 0.79 9.71

bration range: Glucose (%) (calibration range:
1.30–8.18%)

redicted SEP (%) Measured Predicted SEP (%)

.52 10.98 1.34 1.46 9.06

.06 22.74 3.39 2.77 18.31

.22 2.26 2.67 2.22 16.87

.43 15.20 3.07 3.48 13.44

.09 9.53 7.26 8.51 17.21

.95 9.78 1.61 1.49 7.44

.70 11.13 2.63 2.32 11.97



lytica

f
i

b
p
t
f
t
t
v
s

4

i
b

a
t
(
u

i
f
t

A

T
i

R

[

[

[

[
[

[
[
[
[

[

[
[

[

[

[

[
[26] M.M.C. Ferreira, A.M. Antunes, M.A. Melgo, P.L.O. Volpe, Quim. Nova
A.M.K. Pedro, M.M.C. Ferreira / Ana

or total acidity is probably due to the fact that this property is
ndirectly being calibrated using the NIR spectra.

Suitable calibration models could not be obtained for sucrose
ecause this sugar is not given by the tomato itself—it is used as
art of the formulation for adjusting the taste of the final indus-
rialised products. Because, the spectra did not present many
eatures, it was observed during this study that only proper-
ies which were strongly correlated with the tomato solids in
he product could be reasonably calibrated for, but this obser-
ation has to be confirmed in a study with a larger number of
amples.

. Conclusion

A suitable PLS2 calibration model was obtained for determin-
ng solids, acidity and sugars (total sugars, glucose and fructose)
y NIR spectroscopy.

Despite the standard errors of prediction for acidity and sug-
rs being higher than those obtained by the reference methods,
he calibration models for these properties could be improved by
a) adding more samples into the calibration set and (b) building
p region- or country-specific calibration models.

As tomato products are extremely season-dependent, besides
ncreasing the samples in the calibration set, future work should
ocus on validating and/or adjusting the calibration models for
he between-season variability.
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