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Introduction 
Although the multivariate calibration methods like PLS and PCR are able to deal with large quantities of 
highly correlated independent variables, and also with small sets of samples, it is well defined and accepted 
that better predictions are obtained when appropriate variables are selected [11,3]. The feature selection is a 
technique that aids to identify variables subsets that are, to a proposed problem, the most useful to obtain a 
more accurate regression model. Besides, the selected subsets can aid in the chemical interpretation of the 
regression model what is highly relevant for sensorial analysis and quantitative structure-activity 
relationships (QSAR), among other areas. [3,9]. 

In multivariate calibration, it is expected that regions with high signal intensity of some vector considered 
informative, are intuitively connected with those regions from original data that improve the predictions. 
Thus, it is a usual practice among chemometricians to visualize the plots of informative or prognostic vectors 
to localize desirable regions from multivariate data.  

Several authors [7,4,2] advocate the regression vector as a potential informative tool to select variables in 
multivariate calibration. Variables with low regression coefficients do not contribute significantly for the 
prediction and, hence, can be eliminated. Thus, the regression vector can be considered yet, as a weighted 
sum of loadings included in model [8]. But, many times this vector does not provide improve the prediction 
and its use for this purpose has not been explored extensively. 

Recently, a new method for variable selection based upon the use of informative vectors has been presented 
and named as Ordered Prediction Selection (OPS) [10,6,5]. The essence of this procedure is sorting the most 
important variables from an informative vector and to investigate these ordered variables from the most 
relevant. 

The goal of this work is to propose the use of the regression vector for feature selection. The method OPS, a 
powerful tool for variable selection, is used to explore the potentialities of this informative vector. 

Theory 

 The OPS algorithm 

The following steps compose the working OPS algorithm (Figure 1). Initially, the vector that contains 
information about the location of the best independent variables for prediction is obtained. In the second 
step, the original independent variables (X matrix columns) are differentiated according to the corresponding 
values of the informative vector obtained previously The higher the absolute values, the more important the 
original independent variables, what enables their sorting in descending order of magnitude in the third step. 
In the next step, multivariate regression models are built and evaluated (using some validation strategy) over 
a window of variables, and further over the window extended by a fixed increment of variables. This 
procedure is repeated until all variables or a variable percentage is taken into account. Finally, the evaluated 
variable sets (the initial window and its extensions) are compared using the quality parameters calculated 
during validations. The model with the best quality parameters contains the variables that present the best 
prediction power and so, these are the selected variables. 
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Figure 1. Variable selection steps using the OPS method. 

The regression vector 

The bidiagonal algorithm for the PLS1 method [1] was used to build the regression vector. This algorithm 
considers that any X(I×J) matrix can be written as  

t = X URV                                                                    (1) 

where U(I×J) and V(I×J) are matrices with orthonormal columns and R(J×J) is a bidiagonal matrix. Thus, 
considering U, V and R matrices computed with h components truncated in R, we can estimate the Moore-
Penrose pseudo-inverse of X and be able to solve the least squares problem as 

t 1 tˆ                       h h h h h h
−= → = → =y Xb y U R V b b V R U y                                (2) 

where b is the regression vector built with h components. 

The first PLS model was built and validated, from which h = hMod was determined. A study using the OPS 
algorithm was performed by increasing the component number (h = hOPS) starting from hMod, just for 
building the regression vector which will be used in the first step of OPS algorithm. Two optimum 
component numbers are employed in this work, one representing the component number to model building 
(hMod.) and the other representing the component number employed to generate the informative vector in 
OPS method (hOPS). 

Material and methods 

Data set 

NIR data set: The data set was composed by NIR spectra of diesel measured at the Southwest Research 
Institute (SWRI) on a project sponsored by the US Army. The data were obtained from the Eigenvector 
Research homepage at http://www.eigenvector.com. The parameters used were: bp50 - boiling point at 50% 
recovery/ ºC (ASTM D 86); d4052 - density, g/mL, 15 ºC, (ASTM D 4052); freeze - freezing fuel 
temperature/ ºC. In this work, splitting the data was considered in agreement with information obtained from 
the web site, excluding high leverage samples. Besides, the obtained spectra were preprocessed using first 
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derivative. The number of samples in the training/test sets for bp50, d4052 and freeze were 113/113, 122/121 
and 116/115, respectively. Leave-N-out cross validation method, where N was 10 % of the total number of 
samples in the training set, was used to validate the models. 

Model Evaluation 

The calculated error was the root mean square error (RMSE) given in equation 3 and the correlation 
coefficient R was calculated using equation 4. 
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where ŷ  and ŷ are the scalar and vector estimated values, respectively, y  is a scalar of mean values in y 
and Im is the number of samples and indicates the validation applied. When internal validation (cross 
validation) is applied, Im is the number of samples not included in the model built during cross validation 
(CV), and the error and correlation are named RMSECV and Rcv, respectively. For external validation, Im is 
the number of external samples used for prediction and the error and correlation are named RMSEP and Rp, 
respectively. 

Algorithm 

The algorithm employed to study the regression vector consists of the following steps: 

for h = hMod to n components 

 generate the regression vector for variable selection with hOPS = h; 

 run the OPS algorithm using the previously generated vector (use hMod for model building); 

 store the minimum RMSECV obtained in the selection for all h; 

end 

plot the component numbers versus RMSECV. 

Programs 

The OPS® Toolbox [5] routines and all data analysis were performed using made in-house functions of 
MatlabTM 7 (MathWorks, Natick, USA). 

Results and discussion 

NIR data set 

The results indicate that when the regression vector is used as informative vector in OPS algorithm, the 
number of components necessary to build this vector plays a crucial role for improving the results. It was 
observed that by increasing the number of components, the RMSECV value dropped until a suitable hOPS 
value is reached. If the process continues, the RMSECV values increase, i.e., there exists an optimum hOPS 
number, which can be significantly higher than hMod. 

Typical results are presented in Figure 2. Three replicates were done and the RMSECV is presented with 
standard deviation bar for each selection. Notice that the number of components for which the error is 
minimum, is significantly higher than the hMod used for model building. By the results obtained, we 
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suppose that when new components are added for building the informative vector, more information is 
introduced, and consequently, important variables can be better differentiated by this vector. 

 
Figure 2. Typical decrease of RMSECV when more components are included for building the regression 

vector used as informative vector. The bars are the standard deviations of three replicates. This behavior is 
illustrated for parameters (A) BP50, (B) D4052 and (C) Freeze. 

Figure 3 presents both regression vectors for h equal to hMod and hOPS in different context (parameters 
DP50 and D4052). Comparing the absolute values of elements from both regression vectors, they are always 
greater in the OPS. It is likely that the regions more important for increasing the prediction power are 
significantly discriminated from those employed for model building. 

 
Figure 3. Regression vectors built with different number of components, i.e., hMod (solid line) and hOPS 

(short dot line). (A) Parameter BP50 with hMod = 8 and hOPS =18; (B) parameter D4052 with hMod = 11 
and hOPS = 21. 

Table 1 shows the results obtained with all variables (full model) and the selected variables (OPS model). A 
significant improvement of the statistic parameters was obtained with a meaningful reduction in the number 
of variables (below 15 % of the initial number). 

 Full model OPS model Full model OPS model Full model OPS model
 BP50 D4052 Freeze 

hOPS - 18 - 12 - 11 
hMod 8 6 7 
nVars 401 55 401 40 401 55 

RMSECV 4.65 3.33 0.00250 0.00130 2.76 2.29 
Rcv 0.950 0.975 0.977 0.994 0.743 0.824 

RMSEP 4.60 3.52 0.00250 0.00130 3.24 2.65 
Rp 0.963 0.979 0.975 0.992 0.630 0.771 

Table 1. Statistical results for all parameters calibrated for NIR data set. 

The improvement achieved by the statistical results shows that the regression vector built with the optimum 
number of components certainly brings more information about the relevant variables for model building. 



Advances in Chemometrics 
______________________________________________________________________________________ 

 375 (Vol 1) 

Conclusion 
A new approach for variable selection is presented by using the regression vector. This vector, with higher 
number of components with respect to that required by the model, is substantially better to sort the most 
informative variables. This study was carried out by the powerful OPS method. The use of this new criterion 
to build the regression vector was applied successfully to data sets from other areas, such as fluorescence 
spectroscopy, voltammetry, gas chromatography and can be recommended as a new strategy for variable 
selection associated with the OPS method. 
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