Determinação da origem biossintética de vinagres utilizando-se as técnicas SNIF-NMR, RMN de ¹H e Quimiometria.

Elisangela F. Boffo^{1*} (PG), Leila A. Tavares¹ (PG), Glaucia B. Alcantara¹ (PG), Antonio G. Ferreira¹ (PQ), Marcia M. C. Ferreira² (PQ). *efboffo@yahoo.com.br*

1 Laboratório de Ressonância Magnética Nuclear, Departamento de Química, UFSCar, São Carlos, SP. 2 Instituto de Química, UNICAMP, Campinas, SP.

Palavras Chave: Vinagre, Quimiometria, SNIF-NMR.

Introdução

Muitos alimentos podem ser adulterados em função do seu alto valor agregado¹ ou de variações climáticas e que acabam afetando a sua produtividade².

O vinagre também pode passar por processos de adulterações como a adição um vinagre oriundo de uma planta C₄, como a cana de açúcar, de obtenção fácil e de baixo custo em nosso país, para aumentar a produção de um obtido a partir de uma planta C₃, como a uva, diminuindo o custo dessa produção.

Uma forma de verificar a adição de um produto não declarado é utilizar a técnica SNIF-NMR. Para o vinagre ela é baseada na razão do conteúdo isotópico ²H/¹H para a metila do ácido acético, que varia dependendo da planta que o origina (C₃, C₄ ou CAM).

Outra forma de determinar a origem biossontética dos vinagres é através dos métodos quimiométricos, que se destinam a agrupar amostras que possuam características comuns a um mesmo grupo e distinguí-las das amostras com características diferentes³. Além disso, transformam dados complexos em dados mais simples e ressaltam as informações mais relevantes⁴.

Resultados e Discussão

Nesse estudo foi possível determinar a relação isotópica 2 H/ 1 H dos vinagres originados das plantas C_3 e C_4 , mas não claramente daquele oriundo de uma planta CAM. Além disso, verificou-se que os vinagres obtidos de plantas C_3 não foram adulterados com os de plantas C_4 . Os valores da relação isotópica encontrados são mostrados na tabela 1.

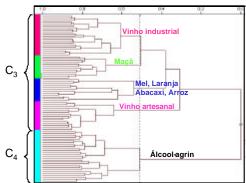

Para os agrins, vinagres obtidos de uma mistura de álcoois da cana e da uva, observou-se valores entre 115,2 – 129,3 ppm. Nessa análise verificou-se que existem diferentes proporções do ácido acético oriundo da cana e da uva nas composições dos vinagres, havendo, portanto, a comercialização sem distinção de produtos comerciais com diferentes qualidades.

Tabela 1. Relação isotópica ²H/¹H dos vinagres.

Vinagre	Relação ² H/ ¹ H (ppm)

C ₃	98,6 - 111,8
C_4	129,5 - 129,9
CAM	106,0
Ác. acético sintético	153,5

Na figura 1 vemos o dendograma onde foram discriminados cinco diferentes grupos para os vinagres analisados. Além de separar os vinagres C_3 e C_4 podemos ver que foi possível separar entre amostras feitas industrialmente e artesanalmente.

Figura 1. Amostras de vinagres discriminadas conforme o tipo, pelo HCA.

Conclusões

Utilizando-se as técnicas de RMN de 1 H e SNIF-NMR, aliadas à quimiometria, discriminamos entre os vinagres obtidos a partir dos ciclos biossintéticos C_3 e C_4 , e também as amostras industriais e artesanais.

Agradecimentos

CAPES, CNPq e FAPESP.

¹ Ogrinc, N.; Kosir, I. J.; Spangenberg, J. E. e Kidric, J. Anal. Bioanal. Chem. **2003**, 76, 424.

² Pupin, A. M.; Dennis, M. J.; Parker, I.; Kelly, S.; Bigwood, T. e Toledo, M. C. F. *J. Agric. Food Chem.* **1998**, *46*, 1369.

³ Ferreira, M. M. C. *Quimiometria*, notas de aulas, 2003.

⁴ Massart, D. L.; Vandeginste, B. G. M; Deming, S. M.; Michotte, Y. e Kaufman, L. *Chemometrics: a textbook*. Amsterdam, Elsevier Science B. V., **2001**.