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This review, the seventeenth of this series and the fifteenth
with the title of Chemometrics, covers the most significant
developments in the field from January 2006 through December
2007. As in the previous review (1), breakthroughs and advances
in the field are highlighted, and trends within the field are
evaluated. As is the current restriction for such reviews, the limit
for citations is less than 200 references, which continues to pose
a challenge since the number of citations in the field of chemo-
metrics continues to grow. If you include the broader areas of
image data analysis, digital and signal processing, photonics,
biophysics, drug discovery, sensors, in silico processing for high
throughput screening, structure and toxicity analysis, genetic
analysis, and the like, the number of papers “balloons” signifi-
cantly. There are many thousands of citations across these fields
specifically dealing with chemometric-like data processing meth-
ods during 2006 and 2007. This should come as no surprise since
disciplines related to computer science, informatics, chemoinfor-
matics, bioinformatics, and all engineering disciplines, including
bioengineering are facile in the use of multivariate analysis
methods for both basic research and applied science.

During 2006 and 2007, a large number of review articles on
chemometrics and applications of chemometrics to fields other
than chemistry have appeared in the literature. The biannual
reviews in analytical chemistry include process analytical chem-
istry(2),gaschromatography(3),andquantitativestructure-retention
relationships (4). A review of multivariate autofluorescence of
intact food systems was also published during this period (5).

Specific chemometrics or chemoinformatics reviews over
this same period include Chemoinformatics: Past, Present, and
Future (6). This review gives a history of chemoinformatics
from the 1940s to 2006. The review focuses on those facets of
chemoinformatics that have overlap with chemometrics. This
includes overall chemical database systems and structures,
computer-assisted structural elucidation, computer-assisted
drug and chemical synthesis design, and 3D structure config-
uration algorithms and systems. The review emphasizes the
progress of chemoinformatics in its core areas, namely, the
development of computer technology. The progress made in
the design and implementation of computational systems has
been a major enabler of new developments and is the power of

chemoinformatics. A summary of this field and its future
prospects are described in this review.

Any reader interested in the history and etymology of the term
chemometrics will find the paper entitled The Past, Present, and
Future of Chemometrics Worldwide: Some Etymological, Lin-
guistic, and Bibliometric Investigations fascinating. The authors
explore the history and usage of the term chemometrics in its
various forms across the world and cite the significant events in
the history of chemometrics in research and in publications (7).
A few highlights delineated by the authors include their finding
that a total of 82 written and 127 pronunciation forms of chemo-
metrics were found in 48 languages worldwide. This comprehen-
sive, historically precise, and well referenced paper states that
from 1971 to 1990 the subdiscipline of chemometrics became
firmly established. With citations from primary references and
descriptions of historical details, they point to the foundations of
chemometrics. In 1971, Professor Svante Wold (Umeå University,
Sweden) coined the term kemometri in Swedish from kemo and
metri and its English equivalent chemometrics. In 1972, Prof. S.
Wold named his group Forskningsgruppen för Kemometri (Re-
search Group for Chemometrics) or Kemometrigruppen (Chemo-
metrics Group) and published the first article using the term
kemometri. In 1973, the first article appeared in the literature that
had the term chemometrics as part of the name of the research
group (Prof. S. Wold’s group), and this is recorded in the SCI
database. In 1974, Prof. S. Wold gave a definition for chemomet-
rics, “The art of extracting chemically relevant information from
data produced in chemical experiments is given the name of
‘chemometrics’ in analogy with biometrics, econometrics, etc.”
Also later in 1974, The International Chemometrics Society was
founded by Professor S. Wold and Professor Bruce R. Kowalski
from the University of Washington, WA (June 10, 1974). In 1975,
the first article that had the term chemometrics in its title and
also the second article with chemometrics as part of the name of
a research group, was published by Prof. B. R. Kowalski, and this
is also recorded in the SCI database. Kowalski’s article defined
chemometrics as a new chemical discipline. A year-by-year
description of the history of the field is also provided by the
authors of this review as well as the origin of the fundamental
review for Analytical Chemistry. In 1980, the first review on
chemometrics appeared in the fundamental reviews issue of
Analytical Chemistry, as a successor to previous reviews on
statistical and mathematical methods in analytical chemistry (April
1980). This paper is well worth the effort to read and archive for
future reference.

A review of quantitative structure-activity relationship (QSAR)
methods has also been published during this period (8). The* To whom correspondence should be addressed.
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authors describe and evaluate several state-of-the-art machine
learning tools. Computational tools discussed include support
vector machines (SVM) and decision tree methods such as
boosting, bagging, and random forest. The authors compare these
methods using eight data sets. By the use of comparative statistical
tests, the authors conclude that all of these techniques can provide
consistent improvements in predictive performance over single
decision trees. The study did not identify the best-performing
algorithm. The conclusion was that a more in-depth investigation
into the properties of random forests would be informative. The
authors also defined a set of parameters for the random forest
method that provided optimal performance across all of the data
sets in the study.

A basic overview of in silico methods has also been published
during this period (9). This tutorial describes how in silico
methods are a valid tool for analyzing the properties of chemical
compounds and are of interest as computational modeling
techniques. These methods are used to build predictive models
of chemical activity given the structure of the compounds. These
methods have been used to model toxicity or biological activity,
such as interactions with biological receptor macromolecules. This
review included examples of modeling to predict estrogen receptor
(ER)-mediated effects. Nuclear receptors, such as ER, have been
studied with in silico tools due to the published concern regarding
endocrine disrupters, which have been implicated as interferents
with hormone regulation. QSAR related methods, such as 3D-
QSAR and virtual docking, have been used to investigate these
phenomena and are described in this review. Molecular modeling
techniques and application of the aforementioned techniques are
presented and discussed.

Standard methods of analysis including chemometric and data
processing are developed and maintained on a continuous basis
through such organizations as the American Society for Testing
and Materials (ASTM International, http://www.astm.org/), the
United States Pharmacopeia (USP, http://www.usp.org/), the
Association of Analytical Communities (AOAC International,
http://www.aoac.org/), and the EPA (http://www.epa.gov/OSA/
fem/methcollectns.htm). The most recent developments in ASTM
over the review period include ASTM E2056-04 Standard Practice
for Qualifying Spectrometers and Spectrophotometers for Use in
Multivariate Analyses Calibrated Through Surrogate Mixtures,
ASTM E1655-05 Standard Practices for Infrared Multivariate
Quantitative Analysis, ASTM D6122-06e1 Standard Practice for
Validation of the Performance of Multivariate Process Infrared
Spectrophotometers, ASTM D7235-05 Standard Guide for Estab-
lishing a Linear Correlation Relationship Between Analyzer and
Primary Test Method Results Using Relevant ASTM Standard
Practices, and ASTM D3764-06e1 Standard Practice for Validation
of the Performance of Process Stream Analyzer Systems. Of these
methods involving chemometrics for standard laboratory and
process analytical chemistry, ASTM D6122 has had its newest
version released in 2006 (10). The scope of the document
describes a standard practice for the validation of analytical
measurements made by online, process near- or mid-infrared
analyzers used for the calculation of physical, chemical, or quality
parameters or properties. Its description applies to a broad
application of these spectrometers but has special reference to
mixtures of liquid hydrocarbons. Analytical standard practices for

multivariate methods, describing specific algorithms and the
application of such methods for calibrating instrumentation has
been broadly addressed by both the D02 and E13 main commit-
tees of ASTM for over a decade.

Many of the chronic challenges to chemometric methods
existing since the early 1980s still remain, such as calibration
transfer, accurate spectral comparison of test samples against
library spectra, improving specificity and signal-to-noise for low
signal in spectroscopic first-order data, and methods to address
scattering across various regimes of absorptive, scattering media.
There are discussions, reviews, modeling, and algorithm com-
parisons published on these subjects, but the fundamental first
principle derivations are still lacking. Thus, industrial practitioners
are still confronted with the situation of applying a potpourri of
algorithms to their data to empirically determine what “works”
best for their own application. They end up searching for models
with fewer factors and smaller SEPs rather than applying a
thorough understanding and rigor to their analysis problems. That
said there are many new and exciting studies discussing a variety
of topics and providing methods that allow us to “see” more deeply
into multidimensional domains and to explore and mine the
information content of data measured on complex chemical
systems.

National and Regional Chemometric Societies are listed within
a single Web site. The list of regional or national chemometrics
societies is not comprehensive but invites chemometric societies
to update or newly submit their contact and general information
to the Webmaster. As noted by the site listing, some of the
societies are quite active while the status of activity for some is
light to dormant. The links included at this Web site (http://
www.namics.nysaes.cornell.edu/chem society.html) are Austra-
lian, Belgian, British, Czech, Danish, Dutch, German, Finnish,
French, Italian, North American, Norwegian, Russian, South
African, Spanish, and Swedish.

Umea University is the very home of the origins of chemo-
metrics activity worldwide and Umea maintains an active research
group and Web site. Their Analytical Chemistry Springboard
includes a comprehensive Web site of chemometrics links
located at http://www.anachem.umu.se/cgi-bin/jumpstation.exe?
Chemometrics.

A special Web site with URL of http://cheminformatics.org/
Cheminformatics Links contains 635 links in 90 categories,
including 44 data sets in 9 distinct categories. The Wiley Chemo-
metrics & Informatics site contains news events and conferences
as well as recent publications of books and journals pertaining to
chemometrics and multivariate analysis; its web address is linked
to http://www.spectroscopynow.com/ (click on Chemometrics
and Informatics tab). The homepage of Chemometrics has a URL
at http://www.chemometrics.se/editorial/index.html. An intro-
duction to chemometrics including a comprehensive overview is
found at http://home.neo.rr.com/catbar/chemo/int_chem.htm

A few of the more representative papers describing important
work in chemometrics over the review period include those listed
herein. Chemometrics is a discipline concerned with the applica-
tion of statistical and mathematical methods as well as those
methods based on formal mathematical logic to chemistry.
Publications concerned with development of new chemometric
methods experienced modest growth during this period, no doubt
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because the number of researchers actively engaged in develop-
ment and publication of novel chemometrics methods has re-
mained constant. On the other hand, the number of researchers
applying chemometrics continues to grow, and the number of
publications concerned with applications of chemometric methods
also grew substantially. The extraction of information from
chemical data continues to drive research in the field of chemo-
metrics. Development of new methods in chemometrics and novel
or important applications of these methods occurred in three major
areas: calibration, resolution, and pattern recognition, which are
summarized below. Topics such as feature selection, data pre-
processing, signal processing, library searching, parameter esti-
mation, and optimization are also covered in this literature survey
and are treated in the context of the three major application areas
that are the focus of this review.

CALIBRATION
Calibration involves relating, correlating, or modeling a mea-

sured response based on the amounts, concentrations, or other
physical or chemical properties of a set of analytes. A tremendous
number of papers have appeared in the last 2 years on the topic
of calibration. A few of these papers focused on issues that are of
interest to chemists who routinely perform calibrations in their
work. For instance, is a single point calibration as good as a
multiple point calibration? A comparison of bias and precision
obtained in single point versus multiple point calibrations was
undertaken using six data sets in a study performed by Peters
and Maurer (11). The results obtained from a full calibration
differed significantly from those obtained from a one point
calibration for five of the six data sets studied. The best one point
calibration results were comparable to the full calibration and
occurred when the calibrator was close to the center of the full
calibration range. Standards for calibrations are usually prepared
by serial dilution, which often generates dilution errors. This kind
of error can lead to a biased estimate. A linear calibration with
correlated covariates that takes the serial dilution error into
account was proposed, and an asymptotically unbiased estimator
with asymptotic normality was developed as part of the study (12).
A simulation study showed that better performance with respect
to bias is obtained using this new approach. The issue of bias
and its effect on measurement uncertainty in calibrations was also
the subject of a review (13). The uncertainty of a result from a
linear calibration is given by a well-known ISO-endorsed expres-
sion. Its derivation and use are explained in a paper with the
approach applicable to any function that uses linear coefficients
(14). The study provides an example of a weighted quadratic
calibration for ICPAES. The author recommends repeatability of
the instrumental response, rather than the standard error of the
regression, be used in calculating the standard error of an
estimate.

Multivariate calibration refers to the process of relating the
analyte concentration or the measured value of the physical or
chemical property to a measured response, e.g., near-IR spectra
of multicomponent mixtures. It remains by far the fastest growing
area of chemometrics as evidenced by the tremendous number
of papers that have appeared in the last 2 years on partial least-
squares (PLS). PLS has come to dominate the practice of
multivariate calibration because of the quality of the calibration
models produced and the ease of their implementation due to

availability of PLS software. Latent variables in PLS are developed
simultaneously along with the calibration model so that each latent
variable is a linear combination of the original measurement
variables rotated to ensure maximum correlation with the informa-
tion provided by the property variable. Multivariate calibration has
been the subject of a recent review (15) with special attention
paid to issues that have not been thoroughly investigated by
previous workers such as sample design, the number of samples
necessary to obtain a reliable regression model, and the effect of
noisy predictor variables on the regression model.

The effect of missing data (i.e., measurements) on the
uncertainties in predictions, and residual square prediction error
from PLS calibrations has been investigated (16). Intervals for
these missing values were developed and used to assess whether
or not a regression model would perform well in the presence of
missing data. These intervals could also be used to determine
which measurements should be recovered to achieve the greatest
reduction in uncertainty. The results are demonstrated by ap-
plication to process control data from a Kamyr digester. Regres-
sion based approaches are considered to be the most statistically
efficient methods for estimating scores of samples with missing
data. A framework has been proposed that allows a user to write
these regression based methods by a unique expression function
of a key matrix (17). From this framework, a statistical perfor-
mance index is introduced as a way to predict the impact of the
missing data on the estimation of the scores without requiring
the use of real data. The results are shown in applications involving
several industrial data sets. Another problem that often arises in
PLS calibrations is confounding effects. Multilevel PLS (18) is
proposed as a better option for analyzing data where sources of
variation are confounded. The models obtained using this tech-
nique contains submodels for the different levels in the data,
allowing the separation of between-run and within-run variation.
Another approach to this problem is the use of experimental
design techniques. A Kohonen self-organizing map has been used
to select samples for training and validation, which in turn are
used to operate the calibration of a multilayer feed forward neural
network (19). The model that resulted performed significantly
better than one developed using the random or Kennard-Stone
selection of samples for both the training and validation sets. The
effect of reference value uncertainties to a sample’s specific
standard error of prediction in PLS has also been investigated,
and a numerical method to assess these uncertainties has been
proposed (20). The role of cross validation in the development of
reliable PLS calibration models was investigated by Westad who
used PLS-2 to develop correlations between chemical structure
and different regions of the electromagnetic spectrum (21). In
the course of his study, he concluded that cross validation acted
as a strong filter toward spurious correlations in the data. An
inconsistency in PLS-1 has been recently reported by Ramos and
Pell (22). Conventional PLS algorithms with orthogonal score
vectors use one model space to compute the regression vector
but another model space to represent the reconstructed data. The
magnitude of this difference depends on the degree of truncation
of the model space. By comparison, the nonorthogonal PLS-1
algorithm of Martens does not suffer from this inconsistency.
Faber reported that jack-knifing, a resampling method widely used
to assess uncertainty in regression coefficients, should not be used
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with designed data since a basic assumption underlying all
resampling methods is being violated. Faber provided support for
this view through reanalysis of a literature data set (23).

Selecting the correct number of latent components for a PLS
model continues to be a problem. Although selecting training and
prediction sets using experiment design techniques is the best
approach for dealing with this problem, many laboratories cannot
afford to take such an approach since samples are often obtained
over time in an undesigned manner. In a recent study, classical
criteria such as cross validation and adjusted Wold’s criterion have
been compared to recently proposed alternatives such as PLS-
PoLiSH and a randomization test (24). The recently proposed
methods were shown to give reliable dimensionality predictions,
which was not always the case for the so-called traditional methods
which appeared to be largely affected by the largest changes in
the modeling capacity of the largest PLS components. The
predictive ability of principal components regression is also highly
dependent on the number of latent variables selected. The popular
cross validation methods, e.g., leave-one-out or Monte Carlo, are
not always able to determine the proper number of latent variables,
especially when so-called anomalous samples are present in the
data. For data containing anomalous samples, it has been shown
that ICOMP, the information complexity criterion, performs better
(25). Overfitting in PLS has been reviewed by Faber (26). He
has proposed a randomization test that enables the user to assess
the statistical significance of each PLS component as it enters the
model. When compared to cross-validation or independent test
set validation, the randomization test performed as well or better
and did not require the use of soft decision rules. A new approach
to cross validation called moving window cross validation (MWCV)
has been developed to select components rationally in a partial
least-squares calibration model (27). This method devises a
pattern to split a validation set using a number of moving windows
that change synchronously along appropriate subsets of all the
samples. Calculations for the mean value of all mean squares error
in cross validations (MSECVs) for all splits are made for different
numbers of components, and the optimal number of components
for the model can then be selected. MWCV is compared to leave-
one-out cross validation (LOOCV) and Monte Carlo cross valida-
tion (MCCV) for PLS models. The authors report that MWCV is
useful for selecting the optimum number of factors while avoiding
the usual tendency to overfit the data.

Achievement of a satisfactory multivariate calibration model
is often not the final step in many practical applications. Once it
is developed, it is often necessary to transfer the calibration model
to other instruments or update the calibration model to ensure
that the calibration can be used at the point of measurement. One
way to achieve transfer of a calibration is to standardize either
the instrumentation used or the calibration itself. Small (28)
described an updating procedure to improve the robustness of
multivariate calibration models for near-IR spectroscopy. With the
utilization of a single blank sample, repeated spectra are acquired
during the instrument warm up. These spectra are used to capture
the noise profile of the instrument on the day that it is used. By
augmentation of the original spectra of the training set with a
group of spectra collected from the blank, an updated model can
be computed that incorporates instrumental drift which may have
developed. Von Stockar (29) addressed the problem of instru-

mental drift and its effect on the robustness of the calibration
model by periodically injecting planned spikes of small amounts
of analytes into the monitored medium. The corresponding
measured difference spectra were scaled up and used as reference
measurements for updating the calibration model in real time
based on orthogonal projection. Barton (30) compared three
standardization methods (direct standardization, piecewise direct
standardization, and double window piecewise direct standardiza-
tion) commonly used to transfer a calibration model between two
instruments. The efficacy of the model transfer was evaluated
based on the root-mean-square error of prediction (RMSEP)
calculated using the independent prediction set samples. Results
indicated that standardization using sealed reference standards
was unacceptable but standardization using the prediction subset
was adequate. The best results were obtained using preprocessed
spectra, not raw spectra and double window piecewise direct
standardization. In another study (31), six widely used standard-
ization or calibration transfer methods (direct standardization,
piecewise direct standardization, additive correction, multiplicative
correction, slope and bias, and difference spectrum with interpola-
tion) were evaluated for the calibration correction of a PLS model
used for an online monitoring system. The results of this study
showed that all of these methods required more than two samples
to obtain the necessary accuracy for the nonlinearity contained
in the spectral data. From the standpoint of a practical calibration
in a real plant, the acceptable number of samples is one or two.
Pell (32) investigated the transfer of calibration models between
Fourier transform near-infrared (NIR) instruments using piecewise
direct standardization and prediction augmented classical least-
squares/partial least-squares. Although the RMSEP values for
calibration transfer were within acceptable range for the two
methods, the prediction augmented classical least-squares/partial
least-squares method was better at preserving the outlier detection
capabilities than piecewise direct standardization when a subset
of samples is used to define the transfer function for the
calibration. In another study, calibration transfer was used to
correct for drift in a portable quadrupole mass spectrometer (33).
In the absence of calibration transfer, quantification of test spectra
was inaccurate by more than an order of magnitude. By application
of a calibration transfer strategy across all measurements, errors
that previously occurred in prediction were not observed until 12
months later.

During the last 2 years, fundamental work on calibration began
to be refined in a number of aspects. Special focus was given to
the type of preprocessing methods applied to the data prior to
the development of a calibration, which can influence the
performance of the model. Felizardo (34) investigated the effect
of some commonly used preprocessing methods applied prior to
PLS or principal component regression. The calibration problem
involved the use of NIR to determine the amounts of methanol
and water in biodiesel. The results confirm the importance of
evaluating various preprocessing techniques when developing a
calibration. Fernandez-Cabanas (35) investigated the effect of 49
different combinations of data pretreatments (first and second
derivatives, autoscaling, detrending, and two version of multiplica-
tive scatter correction) on calibration models developed from NIR
spectra for ground feedlots. Although the validation statistics used
to evaluate the performance of the calibration models did not
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reveal a clear distribution pattern, some pretreatment combina-
tions consistently provided better results. Light scattering effects
pose a problem in the estimation of analyte concentrations from
particulate systems such as blood, tissue, and pharmaceutical
solids. Martens and co-workers (36, 37) have proposed an
extended multiplicative signal correction (EMSC) approach where
light scattering effects are taken into account in an empirical
manner. One of the advantages of EMSC is that it is possible to
utilize causal mathematical models based on the physics of light
scattering in this framework, which can lead to further improve-
ments in the separation of absorbance and scattering effects. A
new algorithm to address the effect of multiplicative light scat-
tering on NIR spectra called optical path length estimation and
correction has been described by Martin (38). This methodology,
which has been shown to be better than extended inverse signal
correction, was successfully validated using two data sets from
the literature. In the past 2 years, wavelets have also been
investigated as a preprocessing method for NIR data because of
their ability to simultaneously accomplish two essential needs in
multivariate calibration: data compression and signal correction.
Data compression can lead to more parsimonious models and
signal correction can improve the quality of the regression models
developed. The advantages of using wavelets to preprocess NIR
spectra were demonstrated in two published studies (39, 40).

Applications of PLS regression dominated the literature. Use of
PLS has become commonplace in analytical chemistry, and applica-
tions are appearing in very distant fields. A major part of the increase
in the use of PLS can be attributed to improving commercial software
for chemometrics, but better education of chemists in the use and
application of multivariate calibration also appears to have a role.
Vibrational spectroscopy has long been an area where chemometric
methods are embraced, and it is no surprise that many of the
applications appeared in analyses using near-IR spectroscopy. Analy-
sis of glucose in various aqueous media has been the subject of
attention from many groups. The lower levels of glucose found in
physiological samples and the high background presents a special
challenge in both spectroscopy and calibration. A spectrum simula-
tion method is described for use in the development of calibration
models for glucose using near IR spectra (41). Synthetic spectra are
computed from background spectra collected from the spectrometer
for which a calibration model is desired and from previously
measured molar absorptivies and solvent displacement factors. The
synthetic spectra are used with PLS to form the calibration model.
This methodology is demonstrated in the analysis of physiological
levels of glucose in an aqueous matrix containing variable levels of
alanine, ascorbate, lactate, urea, and triacetin. Experimentally mea-
sured data from two different instruments with different noise levels
are used to validate the simulation approach. With the more stable
instrument, well performing calibration models are obtained, which
is not the case with the less stable instrument. Simulation approaches
have also been used to develop PLS calibration models for nonin-
vasive blood glucose monitoring (42, 43). A numerical simulation of
light propagation in skin tissue was used to obtain simulated NIR
diffuse reflectance spectra, which in turn allowed the workers to
obtain parameters affecting the prediction of blood glucose levels
by a calibration model. The calibration model obtained through the
numerical simulation had a characteristic peak at the wavelength
around 1600 nm, which corresponds to the characteristic absorption

band of glucose. Through judicious design of the calibration, the
workers were able to prevent the regression model from tracking
chance temporal correlations that are often observed in conventional
studies using NIR spectroscopy to monitor blood glucose levels.
Multivariate curve resolution can be combined with PLS to develop
calibration models using minimal reference data. By application of
evolving factor analysis and orthogonal projection, initial estimates
of the concentration and spectral profiles for the intermediates and
products can be obtained. Further optimization by ALS can lead to
refined estimates of the concentration profiles. The concentration
profiles and the processed spectra can then be used to develop
calibration models. Two studies, one published in 2006 and the other
in 2007, illustrate this approach. In one study, a PLS-2 calibration
model was developed from UV/attenuated total reflectance measure-
ments to determine the end point of a chlorination reaction (44). In
the other study, the use of fiber optics for vitro dissolution testing of
gilbenclamide tablets was investigated. The application of PLS and
multivariate curve resolution solved the problem of interfering
absorbance of excipients and made it possible to obtain dissolution
rate profiles and spectra of both the gelatin capsule and the
gilbenclamide (45). Temperature fluctuations can have an impact
on the precision of spectral measurements adversely affecting the
resulting calibration model. Current methods for addressing this
problem can be divided into two broad categories: calibration model
based approaches and spectral standardization methodologies. A
comparative study on a number of strategies reported in the literature
was undertaken, and it was observed that a global modeling approach
where latent variables are extracted from the spectra using PLS and
then augmented with temperature as an independent variable
achieved the best results (46).

Improving the methods for multivariate calibration themselves
continues to be an active area of research in chemometrics. A
hybrid multivariate calibration method called constrained regu-
larization was developed and tested using simulated and experi-
mental Raman spectra. In this method, a balance between model
complexity and noise rejection is achieved by inclusion of a priori
information as a spectral constraint, which is incorporated into
the algorithm in a flexible manner (47). Constrained regularization
when properly configured was shown to be superior to PLS and
less susceptible to spurious correlations. Several groups offered
improvements to existing PLS algorithms. The effects of ensemble
learning methods, such as bagging and boosting, on kernel PLS
regression was investigated (48). Using two near-IR data sets, the
authors demonstrated that bagged kernel PLS and boosting kernel
PLS performed better than standard PLS. Subagging, based on
subsampling without replacement, has been shown to provide
improvements to PLS models, without the high computational
burden associated with bagging. A strategy for implementation
of subagging in PLS has been proposed (49). The subagging
member models are generated by subsampling the pool of
samples available for modeling and using them to develop new
calibration sets. Subagging is of value in analytical problems
involving complex matrices where reproducing their compositional
variability for the purposes of implementing an experimental
design is not a viable alternative. Subagging was shown to improve
the prediction accuracy of PLS models with improvements in
accuracy varying from 16% to 35%. Support vector machines (SVM)
continue to receive attention as an alternative to PLS because of

4523Analytical Chemistry, Vol. 80, No. 12, June 15, 2008



their ability to model nonlinear spectral property relationships in
data. In one study, SVM was used to quantify some common
adulterants in powdered milk (starch, whey, and sucrose) using
near-IR spectroscopy with direct measurements by diffuse reflec-
tance (50). The calibration models built using SVM were superior
to PLS. In another study, the possibility to visualize and interpret
the information contained in a SVM model was investigated.
Analogous to the score and loading plots which make it possible
to understand the driving force underlying PLS, Buydens claims
that it is possible to turn a SVM regression black box into a
transparent and interpretable modeling technique (51).

Higher order calibration continues to be explored, and analyti-
cal applications are becoming more commonplace. Ortiz who has
provided a review of second order calibration techniques during
this period states that techniques for calibrations involving three
way signals are sufficiently developed for use in routine analyses
(52). The ability to quantify an analyte in the presence of
interfering agents and to extract the signal corresponding to the
analyte of interest makes second and higher order calibration
techniques useful for the identification and quantification of
analytes in complex samples. A new approach to higher order
calibration based on the combination of multiway partial least-
squares and a procedure called residual trilinearization (N-PLS/
RTL) is described (53). N-PLS/RTL was applied to kinetic
fluorescence-excitation emission four way data to determine
procaine and its metabolite, p-aminobenzoic acid, in equine serum.
The proposed algorithm was able to predict the concentration of
these two analytes in the presence of uncalibrated components
despite strong linear dependencies and the loss of multilinearity
in the data since one of the analytes also served as the reagent
and the other was the product of the hydrolysis reaction, which
was studied by fast scanning fluorescence spectroscopy. An
influence function for tri PLS1 regressions was proposed by Geladi
(54) to assess the influence of individual samples on both
calibration and prediction. With the use of this influence function,
a new estimate for prediction uncertainty was obtained. Available
multivariate methodologies for exploiting the second order
advantage of three way data are based on linear models, which
are not applicable if the concentration of the analyte is related in
a nonlinear manner to the spectral information. By combination
of a back-propagation neural network with the technique of
residual bilinearization, models that can extract analyte concentra-
tion from nonlinear data even in the presence of unsuspected
components can be developed. Successful predictions of analyte
concentration in samples containing unsuspected components
were achieved in large data sets (55). The new method was also
able to recover the contribution of the unsuspected component
to the total test sample signal. The new method performs better
than multivariate methodology based on PLS regression with
second order advantage for the nonlinear data sets investigated.

Higher order calibrations often require long computation times
and the handling and storage of very large data sets. Accelerating
the computation time by reducing the storage requirements for
multiway analyses through a data preprocessing method based
on multidimensional wavelet transforms which enables a highly
efficient compression of the data prior to evaluation by PARAFAC
was investigated by Booksh and Vogt (56–59). For three-way and
four-way data, computation times were reduced by a factor of 50

without loss of accuracy or interpretability of the models derived,
which were in good agreement with PARAFAC models developed
using the entire data set. A variety of wavelets were investigated
including hybrid wavelets which use different wavelet types for
different dimensions of the data. For 19 of 20 studied cases, which
included hyperspectal and excitation-emission matrix fluores-
cence data sets, hybrid wavelets performed better than conven-
tional wavelets.

Because of the advantage associated with higher order calibra-
tions, accurate predictions of analyte concentrations in new
samples are possible even if a sample contains components not
taken into account by the calibration model. Although the
calibration step in second order calibrations has been the subject
of numerous studies, factors that influence the prediction quality
of calibration models developed using multiway methods such as
PARAFAC have not been studied in any great detail. Using both
simulated and real data sets, Bro (60) has investigated the size
of the calibration set, the number and degree of overlap of
uncalibrated components, and the type and magnitude of the noise
on the prediction quality of the calibration model. Synovec (61)
describes a method for the automated selection of PARAFAC
models with the appropriate number of factors for two-dimensional
gas chromatography/time-of-flight mass spectrometry data. The
approach taken involves increasing the number of factors in the
model until the mass spectral matching of the loadings against a
target analyte spectrum is indicative of overfitting. Hyperspectral
imaging data have a number of errors that can be corrected by
second order calibration models. Geladi has shown that multiple
Spectralon calibration standards can correct for both spectral and
spatial variations in the data with optimal results achieved using
a two-step calibration and correction process (62, 63). The
advantages of using multiway methods for analysis of three-
dimensional gas chromatographic data as demonstrated by Syn-
ovec (64) include a 10-fold improvement in signal-to-noise ratio
relative to traditional integration methods and an enhancement
in the effective three-dimensional peak capacity due to the
deconvolution of overlapping spectral responses provided by
PARAFAC. Rayleigh scattering and Raman scattering complicate
the modeling of fluorescence excitation-emission matrix mea-
surements by PARAFAC. Eliminating these scattering effects in
the data ensures that satisfactory models are produced. Bro (65)
has used interpolation in areas affected by first and second order
Rayleigh and Raman scatter to remove the interfering signal.
Bouveresse (66) has applied independent component analysis on
the unfolded cubic array with the independent components related
to Rayleigh and Raman scattering identified and removed prior
to reconstruction of the excitation-emission fluorescence data
cube. Both approaches yielded satisfactory models for the data.
To address inner filter effects in fluorescence excitation-emission
matrix data, Gil (67) has utilized a second order multivariate
calibration approach called unfolded partial least-squares with
residual bilinearization. Unfolded partial least-squares, multiway
PLS, parallel factor analysis, self-weighted alternating trilinear
decomposition, and bilinear least-squares were compared using
excitation-emission fluorescence data obtained in a study to
simultaneously determine mefenamic, flufenamic, and meclofe-
namic acids in urine samples (68). Parallel factor analysis, self-
weighted alternating trilinear decomposition, and bilinear least-
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squares, which can exploit the second order advantage inherent
in a data cube performed consistently better than unfolded partial
least-squares and multiway PLS for the excitation-emission
fluorescence data.

RESOLUTION
This section is concerned with methods for the resolution and

recovery of pure-component spectra from the overlapped spectra
of mixtures. A review on the use of factor analysis and multiway
methods in chromatography applied to the peak purity problem
and to the resolution of overlapped chromatographic bands as
well as its extension to simultaneous analysis of multiple runs to
obtain both qualitative and quantitative information was published
by de Juan (69). A simulated annealing algorithm for decomposi-
tion of linear mixtures using a Metropolis-type Monte Carlo search
with mutual information from recovered components as a cost
function and their nonnegativity as a hard constraint has been
proposed (70). The performance of the simulated annealing
algorithm is reported to be superior to methods based on principal
component analysis such as SIMPLISMA or ALS. Maximum
likelihood methods have been applied to Raman spectra of
mixtures to estimate their intrinsic dimensionality and the cor-
responding number of chemical components in the mixture (71).
Even when the signal-to-noise ratio of the Raman data was low,
accurate estimates of the number of components in the mixture
could be obtained (including minor components) by smoothing
the data before applying the maximum likelihood estimator.
Another advantage of using this maximum likelihood estimator
was that it is computed locally at every data point, which offers
the advantage of allowing the user to segment the sample
specimen into homogeneous regions. Statistical heterospectros-
copy, a new paradigm for the simultaneous analysis of multispec-
troscopic data sets, was introduced for the identification of
biomarkers (72). The potential of this technique was established
by the simultaneous analysis of proton NMR and liquid chroma-
tography/mass spectrometry data, which demonstrated that direct
cross-correlation of spectral parameters by way of chemical shifts
from NMR and m/z data from mass spectra, and is readily
achievable for a variety of metabolites. Band target entropy
minimization, a spectral reconstruction method that elucidates
both the pure component spectra and their corresponding
concentration profiles without a priori information, has been
applied to a variety of curve resolution problems in two-
dimensional correlation spectroscopy (73), excitation-emission
fluorescence matrix spectroscopy (74), and reaction monitoring
using infrared emission (75) and FT-IR and UV-visible absor-
bance (76).

Determining the feasible region of potential solutions for
multivariate curve resolution problems continues to be an active
area of research. Rajko (77) discusses the use of computational
geometry tools to draw Borgen plots of any three component
system. With the use of this methodology, the highly cited and
used data set of Lawton and Sylvestre is shown to consist of more
than two components. The effects of noise on the rotational
ambiguity in model free analyses of multivariate data were
investigated by Tauler (78). Because of the problems associated
with noise on rotational ambiguity, Tauler has proposed a new
technique for self-modeling curve resolution called resolving factor
analysis. Alternating least-squares continues to be the most widely

used technique to solve multivariate curve resolution problems.
A new nonlinear optimization algorithm based on nonlinear
constraints has also been proposed by Tauler to identify appropri-
ate rotations and perturbations of subspaces defined by solutions
based on principal component analysis (79). The concentration
and spectral profiles obtained by alternating least-squares and the
new proposed algorithm are similar and are both within the
boundaries of feasible solutions for this problem.

First order analytical data have mainly been resolved by
principal component analysis based techniques. A modified curve
resolution technique utilizing singular value decomposition was
directly applied to reflectance spectra of two different soil types,
each coated with di-BU phosphate (80). The results provided
interpretable spectra for the detection and classification of organic
analytes adsorbed on soil and were consistent with those previ-
ously obtained using an extended multiplicative scatter correction.
Principal component analysis and alternating least-squares com-
bined with a kinetic modeling strategy have been used to
determine rate constants for a curing reaction of epoxy resins (81).
The recovered concentration profiles are fitted to a chemical
model proposed for the reaction based on information contained
in the recovered profiles. A new approach for determining the
shelf life of industrialized food products, the multivariate acceler-
ated shelf life test, was proposed in which principal component
analysis scores are used to estimate the multivariate rate constant,
the multivariate acceleration factor, and the multivariate activation
energy (82). The method was successfully applied to an industrial-
ized tomato product. The structural evolution of isotactic
polystryrene during the cold crystallization process was studied
using FT-IR and multivariate curve resolution (83). Orthogonal
projection, alternating least-squares, and fixed-size moving window
evolving factor analysis were used to interpret the spectral changes
that occurred in the investigated chemical process. Principal
component analysis and alternating least-squares methodology
was applied to near IR spectral data for an esterfication reaction
(84). Spectral and concentration profiles were estimated with the
pure spectra of the components and the concentration values of
the acid used as soft equality constraints. Good results were
obtained for the prediction of the acid value and the hydroxyl value
based on the RMSE values for these constituents. The use of
principal component analysis as a straightforward approach to
obtain a good estimate of relative response factors for small
impurity peaks in HPLC-diode array chromatograms without
knowledge of the molar absorptivities and without any precali-
bration was demonstrated by Wiberg (85).

Resolution applied to higher order data (second and third
order), with a special emphasis on chromatographic techniques
hyphenated to spectroscopic techniques remain the main source
of published papers during this period. There were too many
applications of multivariate curve resolution applied to higher
order data to cite here. However, representatives of those
publications are summarized in the following paragraph. These
were selected on the basis of a novel or important application,
preprocessing, or an unusual measurement system. Two-dimen-
sional liquid chromatography with diode array detection generates
data sets on the order of 10 million data points. Using the
techniques of window target testing factor analysis and parallel
factor analysis/alternating least-squares with flexible constraints,
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Rutan and co-workers (86) have shown that it is possible to resolve
rank deficient data and to obtain quantitative information from
95 peaks in a maize seedling digest, focusing on compounds
related to the biosynthetic pathways of indole-3-acetic acid, the
primary growth regulator in plants. A novel implantation of an
alternating least-squares algorithm for resolving three- and four-
way data using computer simulated multiway data as well as
multiway data obtained in typical kinetic experiments with liquid
chromatography and diode array detection has been proposed
(87). The new multiway ALS algorithm provides estimates of the
spectral profiles for each of the components involved and
simultaneously estimates the rate constants for the reaction steps
at different experimental conditions. Multivariate curve resolution
techniques applied to three-dimensional spectral matrices obtained
from synchronous fluorescence spectra of fulvic acids at different
pH value and at different concentrations of the fulvic acids were
used to estimate spectral and fluorescence intensity profiles for
the detected components (88). Some of the computed fluores-
cence intensity profiles exhibited a shape similar to acid-base
species distribution diagrams, which allowed pKa values to be
estimated for different fulvic acids. An evolving factor analysis
algorithm based on trilinearity that is intrinsic in many three-way
data arrays has been developed, which allows the user to obtain
a rank map of three-way chromatographic data (89). Selective
regions in the chromatogram characteristic of a specific compo-
nent can be determined using the rank map, which in turn
provides the possibility of resolving profiles of individual compo-
nents one at a time. A new method for the analysis of two-
dimensional chromatograms based on finding a new pair of axes
to represent the data has been proposed (90). If one of the axes
captures all of the variance for a specific family of compounds, a
decrease in the matrix rank will occur. The rotation necessary to
achieve this desired effect is implemented by introducing retention
models in both chromatographic dimensions to describe the
behavior of the compounds that constitute a single family. After
this transformation, a family of compounds is associated with a
single source of variation which is captured by a single axis in
the data. This approach has been demonstrated using the
separation of families of functional poly(methyl methacrylate)
polymers with different numbers of hydroxyl end groups and
different degrees of polymerization.

PATTERN RECOGNITION
The overall goal of pattern recognition is classification.

Developing a classifier from spectral, chromatographic, or com-
positional data may be desirable for any number of purposes
including source identification, detection of odorants, presence
or absence of disease in a patient or animal from which a sample
has been taken, and food quality testing to name a few. The
classification step is often accomplished using one of several
techniques that are now fairly well established including principal
component analysis, hierarchical clustering, k-nearest neighbor,
statistical discriminant analysis, and soft independent modeling
by class analogy (SIMCA). Few novel pattern recognition methods
were published during the past 2 years. Instead the chemical
literature on pattern recognition focused on novel and not so novel
applications. Nevertheless, classification of data remains an
important subject in chemometrics as evidenced by the large
number of citations in the Chemical Abstract database on pattern

recognition applications during this recent review period which
were only rivaled by calibration. Hence, most of the references
in this section are organized according to the type of application.
However, there were papers published by research groups in this
period that focused on improvements in the methods used for
classification. During the last 2 years, fundamental work on
classification began to be refined in a number of aspects with
special focus given to data preprocessing.

A large number of publications have appeared in the chemical
literature on the practical aspects and implications of preprocess-
ing chromatographic and spectroscopic data to correct for
undesirable time-shifts. For a successful pattern recognition study,
it is essential that features encode the same information for all
samples or objects in the data set. If variable 3 is the area of a
gas chromatographic peak for acetaldehyde in sample 1, it must
also be the area of the GC peak for acetaldehyde in the other
samples that comprise the data set. Hence peak matching is
crucial when chromatograms or spectra are translated into data
vectors. Kaliszan (91) compared the performance of three peak
alignment procedures for preprocessing electrophoretic nucleo-
side profiles. The three warping procedures investigated, dynamic
time warping (DTW), correlation optimized warping (COW), and
parametric time warping (PTW), were examined using two sets
of electrophoretic data. The warping methods investigated enabled
differentiation between electropherograms of healthy and cancer
patients by principal component analysis. In another study, PTW
was shown to be the easier and faster to use than DTW and COW
(92). When COW and DTW are used, peak shifts in both
directions can be corrected but optimization of two input param-
eters is required which is not an easy task in COW. However,
the improvement in precision of peak retention times after
alignment justifies the use of these more complex algorithms. An
extension of DTW termed ordered bijective interpolated warping
(OBI-Warp), which attempts to address the deficiencies of DTW
by coupling it to a piecewise cubic hermite interpolation to produce
a smooth warping function has been proposed (93). The perfor-
mance of the algorithm was demonstrated using LC-MS data.
From their study, the authors concluded that Pearson’s correlation
coefficient as a measure of similarity outperformed covariance,
dot product, and Euclidean distance in its ability to produce correct
alignments when optimal or suboptimal alignment parameters are
used. Piecewise linear functions can be used to correct for
variations in mass and elution time measurements in LC-MS or
GC/MS data (94, 95). A method for aligning chromatographic
data by identifying reference peaks present in all of the chro-
matograms, calculating the amount of retention time shift between
chromatograms needed to align these peaks using a cubic spline
interpolation, and the subsequent shifting of the other peaks by
the application of this function has been proposed (96). An
approach to automate the alignment of chromatographic data
using a discrete coordinate simplexlike optimization routine is
presented with emphasis on the practical aspects including the
selection of the required parameters and the reference samples
used for the matching (97). The advantages of this approach are
demonstrated using simulated GC and HPLC data. A two-
dimensional peak detection algorithm is described by Jacobsson,
which exploits the fact that in high resolution LC-MS data, peaks
emerge flanked by data voids in the corresponding mass axis (98).
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The method is simple and only requires a priori knowledge of
the minimum chromatographic peak width, which is a system
dependent parameter.

Scaling of spectral data is often crucial in the development of
a classifier. However, the procedures that should be employed in
a particular study are highly dependent upon the nature of the
problem under investigation and the goals of the analysis.
McNaughton has compared the performance of six spectral
preprocessing techniques on the classification of Raman spectra
of microalgal cells by their nutrient status (99). The preprocessing
techniques investigated included baseline correction with vector
normalization, multiplicative scatter correction, extended multi-
plicative scatter correction, standard normal variate, and vector
normalized first and second derivative spectra. With the use of
PLS, all of these preprocessing techniques allowed differentiation
of Raman spectra of nutrient replete and nutrient starved algal
cells with derivatives and extended multiplicative scattering
correction performing the best. However, SIMCA was not able to
differentiate the Raman spectra by nutrient class due to the small
model distances involved. On the other hand, similar results were
obtained when a comparison of methods for baseline correction
of Raman spectra of solid samples of illegal narcotics diluted with
various materials using principal component analysis to assess
the performance of the preprocessing techniques investigated
(derivative preprocessing and a new polynomial method described
by Lieber and Mahadevan-Jansen) was undertaken (100). An
algorithm for the removal of the fluorescence background from
a Raman spectrum based on a modified multipolynomial fitting
of the data with a peak removal procedure during the first iteration
was proposed (101). The algorithm was validated using real time
Raman spectroscopy and in vivo measurements that are character-
ized by low signal-to-noise. An algorithm for removing cosmic
spikes from Raman spectra obtained from dispersive instruments
equipped with charged coupled detectors was described (102).
The algorithm is easy to implement, computationally efficient and
is shown to generate recovered spectra with negative distortion.
The performance of four data preprocessing methods in the
presence of different types of noise was evaluated using LC-MS
data obtained from the analysis of a pharmaceutical drug and its
degradation product (103). The preprocessing methods investi-
gated were the component detection algorithm (CODA) and three
types of digital filters: matched filtration, Gaussian second deriva-
tive, and Savitzky-Golay. In the case of random white noise,
matched filtering performed the best in accordance with theory.
By comparison, no improvement was observed with any of the
preprocessing methods studied when heteroscedastic noise was
present in the data.

There appears to confusion as to the need for and the role of
preprocessing acquired spectra in both the proteomics and
metabolomics literature. A number of studies have been performed
in the past 2 years to better understand the role of data
preprocessing in the context of the particular analysis problem
undertaken. Two studies on this subject are described here in.
In one study, Kvalheim used factorial design with the ratio of
intergroup to within group differences as the response variable
to investigate the effects of smoothing, binning, noise structure,
and normalization on the interpretation and classification of mass
spectral data (104). From this study, Kvalheim concluded that

mass spectral profiles have to be corrected for heteroscedastic
noise prior to normalization and strong interactions exist between
several of the pretreatment steps, e.g., noise reduction and
normalization, which means that different pretreatment steps
cannot be considered in isolation. Box car averaging (or binning)
can serve as a substitute for smoothing of data by Savitsky-Golay
filtering while at the same time reducing the dimensionality of
the data. In the absence of smoothing, box car averaging should
be performed before peak alignment. If box car averaging is not
performed, the order of data pretreatment should be smoothing,
peak alignment, nth root transform of the data to eliminate
heteroscedastic noise, and normalization. In another study,
problems that are associated with bucketing 1H NMR spectra
derived from urine are discussed (105). The authors suggest
definitions for and discuss preprocessing operations crucial to
extracting information from NMR data. They conclude that care
must be taken when bucketed data is normalized to constant sum.

Improving the methods used for pattern recognition continues
to be an active area of research in chemometrics. Several groups
offered new algorithms for visualization of multivariate chemical
data. Melssen and Wehrens (106) introduced two alternative
Kohonen neural network configurations which combine the
transparency of counter propagation neural networks with the
modeling power of a Kohonen neural network. Both network
configurations performed better than a traditional Kohonen neural
network or a counter propagation neural network. Smilde (107)
introduced Grey component analysis (GCA) as a new exploratory
data analysis method, which uses a soft penalty approach to push
the eigenvector decomposition in the direction of previous
available information about the data analysis problem. GCA can
be used to confirm the validity of prior information or can work
in an exploratory mode to study new phenomena in great detail.
Rousseeuw (108) describes an algorithm based on his FASTICA
method to robustify independent component analysis. This modi-
fication appears to be efficacious based on its performance with
simulated and real data sets. Two way moving window principal
component analysis, which considers all possible spectral regions,
by using variable and sample moving windows is proposed as a
new spectral data classification method (109). An advantage of
the proposed method is its ability to identify the optimal spectral
region for classification. The moving window method has per-
formed better than principal component analysis or SIMCA on
the classification problem involving visible-near IR spectra of
mastitic and healthy udder quarters of cows. Detailed work
comparing PLS with canonical correlation (CA) and the dif-
ferentiation of these two methods from OPLS was undertaken by
Trygg (110). He has reported that PLS is unidirectional, while
canonical correlation is bidirectional. Canonical correlation can
be used for prediction in a bidirectional fashion. That is, it can be
used to predict Y from X and X from Y. PLS, on the other hand,
predicts Y from X and is not intended to predict X from Y because
PLS only models X from X and not Y from Y. However, canonical
correlation, which is a regression based method, suffers from well-
known regression based problems. OPLS, on the other hand, has
“the best of both worlds.” The idea of OPLS is to separate the
systematic variation in X into two parts: a Y-related part and a
Y-orthogonal part. The Y-orthogonal part may be part of the model
but is useless for prediction of Y. Its main benefit is model
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interpretation and pure profile estimation, while maintaining the
predictive ability of the PLS method. Two papers have been
published describing the application of this method to spectros-
copy in process monitoring of pharmaceuticals (111, 112).

Applications of pattern recognition methods dominated the
literature. Lavine (113) used the wavelet packet tree and a genetic
algorithm for pattern recognition to analyze differential mobility
spectra for structural content by chemical family. The wavelet
packet transform denoised and deconvoluted the mobility spectra
by decomposing each spectrum into wavelet coefficients, which
represents the samples constituent frequency. Wavelet coefficients
characteristic of the compounds structural class were identified
by a genetic algorithm (GA) for pattern recognition. The pattern
recognition GA used both supervised and unsupervised learning
to identify coefficients which optimize clustering of the spectra
in a plot of the two or three largest principal components of the
data. Because principal components maximize variance, the bulk
of the information encoded by the selected coefficients is about
differences between chemical families in the data set. The principal
component analysis routine embedded in the fitness function of
the pattern recognition GA acts as an information filter signifi-
cantly reducing the size of the search space since it restricts the
search to coefficients whose principal component plots show
clustering on the basis of chemical family. Brereton (114) used
tandem mass spectrometry and pattern recognition methods to
characterize the contamination of banknotes by cocaine. Ban-
knotes obtained from defendants who are in close proximity to
cocaine will differ from banknotes obtained from the general
population in terms of cocaine contamination. With the use of
principal component analysis and class modeling via the Mahal-
anobis distance to analyze mass spectral data, it was possible to
discriminate between the two classes of bank notes. Principle
coordinate analysis and gas chromatography/mass spectrometry
was used to characterize human sweat obtained from an isolated
population of 200 individuals in Carinthia for the purpose of
identifying individual fingerprint patterns in the data indicative of
the family of the donor (115). A unique facet of this study is that
it was necessary to study a large number of small groups instead
of small number of large groups, and different approaches were
required to analyze the data because of the attendant problems
associated with the analysis of sparse data matrices. Canonical
correlation analysis of volatile organic compounds analyzed by
thermal desorption gas chromatography/mass spectrometry has
been used to differentiate expired air samples from entrapped
people in a collapsed building from other sources of volatile
organic compounds including healthy or fasting humans, waste
disposal bins, air from bags with decaying humans, and urban
air (116). Classification of water as to its port of origin using
PARAFAC-SIMCA analysis of excitation-emission matrix mea-
surements of color dissolved organic matter provides a forensic
tool to enforce ballast water exchange regulations which prevent
introduction of nonindigenous aquatic nuisance species in the
United States (117).

The combination of sensors and pattern recognition continues
to be an active area of research. Principal component analysis of
a library of digital images of a colorometric sensor array prepared
from 25 chemically responsive dyes printed on a hydrophobic
membrane and immersed in different soft drinks provided facile

identification of all the soft drinks with a misclassification rate of
less than 2% (118). A novel preprocessing method for an array of
differentially tuned chemical sensors exposed to analytes dis-
persed in naturally turbulent chemical plumes from a point source
provided a stable response fingerprint representative of the analyte
generating the response (119). Rose-Pehrsson (120) used a
probabilistic neural network to classify cyclic voltammograms of
gaseous mixtures for sulfur compounds using a sensor array
containing four cermet electrodes. Prior to pattern recognition
analysis, each raw voltammogram was background subtracted
using clean air and then concatenated to form a vector of points
which were then compressed by wavelet transformation. Partial
least-squares discriminant analysis and SIMCA pattern recognition
were used to classify surface enhanced Raman spectra of chemical
and biological simulants collected on multiple substrates fabricated
from colloidal gold adsorbed onto a silanized silica quartz surface
(121). The use of the pattern recognition methods demonstrated
both the feasibility and limitations of this technique for the
identification of known but previously unclassified spectra.

A few papers focused on the use of pattern recognition
methods in the medical and biological sciences. Hierarchical
clustering and linear discriminant analysis was used to classify
Raman images of nontumor and tumor bladder tissue collected
from 15 patients (122). Colored Raman maps of the data were
created in which each color represented a cluster of spectra
measured on tissue areas of similar composition. For each cluster,
the cluster average spectrum was calculated and labeled as tumor
or nontumor in accordance to pathohistology. Classification of
these spectra using pattern recognition techniques yielded 93%
correct classification with 94% sensitivity and 92% specificity.
Principal component analysis of Raman spectra from fingernails
and toenails provided discrimination between these two very
similar biomaterials (123). Linear discriminant analysis provided
a classification accuracy of 95% for differentiating toenails from
fingernails. Linear discriminant analysis was used to differentiate
infrared attenuated total reflectance spectra obtained from ath-
erosclerotic and normal rabbit aorta samples (124). The successful
classification of this data reveals the potential of using spectros-
copy combined with multivariate classification for the identification
of normal and atherosclerotic aorta tissue for in vitro and in vivo
applications. Discriminant analysis and principal component
analysis were used to classify Raman spectra of bacterial cells
(Escherichia coli and Staphylococcus epidermidis) as viable or
nonviable (125). Nonviable bacterial cells were inactivated by
different chemical and stress conditions including starvation,
EDTA, and high temperature. The overall classification success
rate obtained for the data was 87%, which is impressive in view of
the different treatment types and viable cell lines used. With the
appropriate modification, Geladi et al. have shown that principal
component analysis can be applied to electrical impedance data
and provide more information then simple juxtaposition or Argand
diagrams (126). They demonstrated this in a study in which
different concentrations of Magainin and Gramicidn A gave
different responses on lipid monolayers in different electrolyte
solutions.

Another active area of research in pattern recognition is data
fusion. In the analysis of complex mixtures, data from one method
might not suffice for classification when using only a single
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analytical technique. A comparison of three different methods of
data fusion on two data sets was performed, and the possibilities
and difficulties associated with these three methods were dis-
cussed (127). The methods in question were concatenated data,
full hierarchical modeling, and batch modeling. The first two
approaches were found to be the most successful. A new midlevel
data fusion method based on the wavelet transform was proposed
to process Raman and X-ray fluorescence spectra (128, 129). Each
spectrum set is divided into blocks according to frequency with
the blocks that contain background or noise removed. Variable
selection is then performed on the remaining blocks to extract
the most informative variables, which are then concatenated to
form a meta-signal ensemble. Classification of the ensemble data
vectors is then performed using partial least-squares discriminant
analysis. This system, which has been applied to real spectra of
ancient pigments obtained from art work, can be automated.
Brown (130) has proposed a method to improve classification by
taking advantage of the fact that wavelets can transform chemical
data into components called scales which differ in their underlying
frequency or signal content. These scales will contain different
amounts of information about the classification problem, and the
scales can be selectively combined to yield a classifier with better
performance than that of a classifier trained on the original data
or developed on any individual scale.

There were a large number of publications in the past 2 years
on the classification of second and higher order data. Using
PARAFAC2 to analyze GC/MS data, Hibbert (131) has shown
that it is possible to classify weathered diesel oils as to type. The
retention time shift in chromatographic peaks between runs was
tackled using the specific structure of the PARAFAC2 model.
Daszykowski (132) applied wavelets to denoise gel electrophoretic
images followed by fuzzy warping of features extracted from the
electrophoretic data to align the gel images. Kernel PLS methods
were then used to classify the data. Discrimination of wines based
on 2D-NMR data was performed using learning vector quantization
neural networks (133). Orthogonal signal correction was used as
a data preprocessing method to remove from the data matrix
information not correlated to the sample class label. Trygg (134)
investigated the multivariate analysis of congruent images. Each
image represents one object, and the data set contains a set of
congruent images. Alternatively, the set of images may not be
fully congruent but can be made so through the use of wavelet
analysis and the distribution of the wavelet coefficients which form
a set of congruent vectors amenable to multivariate data analysis.
Naumann (135) has proposed an improved method of image
segmentation of IR microspectroscopic data obtained from histo-
logical specimens provided by diseased and presumed normal
donors. The database of colon microhyperspectra was used to train
and validate a multilayer perceptron artificial neural network
model. A differential wavelet based data smoothing algorithm has
been combined with a fuzzy clustering algorithm for the clas-
sification of Raman spectral images (136). The preprocessing of
the data is facilitated by decomposing the images in the wavelet
domain where the discrimination of signal from noise is readily
performed. Practical approaches for the application of pattern
recognition methods to 2-DE protein patterns are demonstrated
using three independent strategies for image analysis for align-
ment and matching of images, which allowed the successful

application of multivariate analysis techniques to the data (137).
Alignment of features between images is a problem that has
limited the application of pattern recognition techniques to higher
order data. Potential solutions to this problem have been recently
proposed in the literature (138, 139).

Several articles appeared in the literature during this period
that did not fit in any of the categories or divisions within this
section but are noteworthy for their methodology. Brown (140)
investigated the transfer of multivariate classification models
between laboratory and process near-IR instruments for the
discrimination of whole coffee beans. A modified version of slope/
bias correction, orthogonal signal correction trained on a vector
of class identities, and model updating performed well in the
preprocessing of the data to permit the transfer of a classification
model developed from one data from one instrument to be used
on another instrument. Classification of photochemical and
metabolic reactions by random forest and Kohonen self-organizing
maps was achieved with up to an 84% accuracy for a data set of
metabolic reactions catalyzed by transferases and 93% for a data
set of photochemical reactions by taking as input the difference
between the 1H NMR spectra of the products and the reactants
(141). The covariance matrix computed from the retention
time-ion abundance data matrix from GC/MS data of ignitable
liquids has been shown to be a useful tool for automated searching
of ignitable liquid databases (142). The correlation coefficient,
which has been used by workers to match an unknown to a
spectrum in a library, is not amenable to a Student’s t test which
can calculate the probability that two spectra are not related
because the spectra are not normally distributed variables and as
such do not fulfill the requirements for a statistical interpretation
of the correlation coefficient (143). An intensity based probability
function to identify peptides from mass spectra and amino acid
sequence databases based on the central limit theorem and
explicitly dependent on the cumulative product ion intensities,
number of product ions of a peptide, and the expectation value of
the cumulative intensity has been proposed (144). The central
limit model performs better than other library metrics when
matching low-quality tandem mass spectra, where the number of
shared peaks is insufficient to correctly identify a peptide. For
high-quality mass spectra, Poisson and hypergeometric models
performed better. An adaptive multivariate statistical process
monitoring (MSPC) approach has been proposed to routinely
monitor a process subject to operating condition changes (145).
Samplewise and blockwise recursive methods were used for
updating a weighted mean and covariance matrix. A new model
was derived recursively by utilizing the updated mean and
covariance structures with the current model. Two monitoring
metrics were described: the Hotelling’s T2 and the Q-statistic. The
paper demonstrates the effective use of these metrics as well as
a method for calculating and updating their control limits. The
updating scheme proposed is robust in reducing the false alarm
rate encountered when using monitoring charts, and it reduces
the model sensitivity to the effects of outliers. The adaptive MSPC
approach has been shown to be effective for monitoring processes
where changes are either fast or slow.
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