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Multivariate concentration
determination using principal
component regression with
residual analysis
Richard B. Keithley, Michael L. Heien, R. Mark Wightman,
Data analysis is an essential tenet of analytical chemistry, extending the

possible information obtained from the measurement of chemical phenom-

ena. Chemometric methods have grown considerably in recent years, but

their wide use is hindered because some still consider them too complicated.

The purpose of this review is to describe a multivariate chemometric

method, principal component regression, in a simple manner from the point

of view of an analytical chemist, to demonstrate the need for proper quality-

control (QC) measures in multivariate analysis and to advocate the use of

residuals as a proper QC method.
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1. Introduction

Advances in electronics and computing over
the past 30 years have revolutionized the
analytical laboratory. Technological devel-
opments have allowed instruments to be-
come smaller, faster and cheaper, while
continuing to increase accuracy, precision
and availability. Data-analysis methods
have also benefitted from advances in tech-
nical computing; commercially-available
mathematical programming packages allow
scientists to perform complex calculations
with a few simple keystrokes. Furthermore,
software sold with many commercial
instruments contains automatic data-pro-
cessing algorithms (e.g., Fourier transform
analysis, data filtering and peak recogni-
tion). The advances in computing allow
researchers to obtain increasing amounts of
chemically-relevant information from their
data; however, this is not always achieved
using simple data-processing techniques.
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Svante Wold first coined the term
‘‘kemometri’’ (‘‘chemometrics’’ in English)
in 1972 by combining the words kemo for
chemistry and metri for measure [1].
Presently, the journal Chemometrics and
Intelligent Laboratory Systems defines
chemometrics as: ‘‘the chemical discipline
that uses mathematical and statistical
methods to design or select optimal pro-
cedures and experiments, and to provide
maximum chemical information by ana-
lyzing chemical data’’ [2]. The field of
chemometrics has also benefitted from
technological advances in the past 30
years, causing the number of researchers
using chemometric methods to grow [3–
5]. Unfortunately, however, chemomet-
rics has not been as rapidly integrated
into the analytical laboratory as other
advances.

The slow adoption of these methods
may be attributed to several factors.
Technical articles on the subject are often
written by chemometricians for chemo-
metricians; it can be difficult for the
general scientist to approach this field and
comprehend the material presented. Even
introductory texts and review articles of-
ten require working knowledge of linear
algebra and matrix manipulations. Che-
mometric methods have developed so that
they are readily available to any scientist
and, in this article, we hope to show the
importance of chemometrics to the
bench-top analytical chemist in concen-
tration determination using a technique
known as principal component regression
(PCR).
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2. Multivariate analysis in analytical chemistry

Traditional concentration determinations are usually
univariate, isolating one variable (e.g., peak current at
one potential in an electrochemical measurement or the
wavelength of maximum absorbance in a spectroscopic
measurement). While intuitive and simple, this approach
to data analysis is limited and wasteful. As an example,
consider a UV-VIS spectrum of a particular analyte
containing 500 data points. With only one data point
being used for concentration determination (absorbance
at one wavelength), after identification, 99.8% of the
data will be discarded. Data collection can limit the
throughput of an analytical methodology; it is not effi-
cient to collect data that will not be used. In addition, a
univariate measurement is extremely sensitive to
interferents. It is often impossible to differentiate an
analyte-specific signal from an interferent when looking
at only one point of a data spectrum.

Multivariate calibration methods involve the use of the
multiple variables (e.g., the response at a range of
potentials or wavelengths, or even over the entire range
collected to calculate concentrations). This offers several
advantages, often reducing noise and removing
interferents [5]. It can be easier to identify and to remove
noise when looking at the entire data set, rather than
one point. In addition, interferents can be taken into
account, provided their measurement profile differs suf-
ficiently from the analyte of interest [6]. Multivariate
methods are generally better than univariate methods.
They increase the amount of possible information that
can be obtained without loss; multivariate models can
always be simplified to a univariate model [5]. The
advantages of multivariate methods come at a cost of
computational power and complexity, but these draw-
backs are easily handled with common mathematical
software packages (e.g., Matlab).

Analytical techniques are often misused because their
limitations are not always clearly understood. Multivar-
iate analysis methods are no different and have the po-
tential to be misused more than instrumental techniques
because all the computations are performed behind the
computer screen. Chemometricians have derived a series
of rules, statistical tests and other criteria for users to
judge and to validate the accuracy of the information
obtained with multivariate methods [7]. It is important
for any new user of multivariate methods to remember
that the computer will always give an output but it is up
to the scientist to make sure that both precautions are
taken and the answers obtained make chemical sense.
2.1. Principal component regression
PCR is a basic, but very powerful, multivariate calibra-
tion method. In this article, we present a brief overview
of PCR, but, for a more detailed explanation, readers are
1128 http://www.elsevier.com/locate/trac
referred elsewhere [8]. In addition, Kramer offers an
excellent review of the topic in a manner that the bench-
top analytical chemist can understand and use, and we
highly recommend it to anyone interested in using the
technique [9]. PCR is a combination of principal com-
ponent analysis (PCA) and least-squares regression.

When discussing multivariate analysis techniques,
including PCR, three terms are often used: variance,
vector, and projection. Variance is another word for
information of a data set. Sources of variance within a
data set include:
� changes in the chemical make-up of analyzed samples

(concentrations and/or composition);
� changes in environmental parameters (e.g., tempera-

ture and pressure); and,
� changes in instrument performance such (e.g., a drift-

ing baseline).
The term ‘‘vector’’ is used to describe a line segment in

a coordinate system with a specific direction, and the
term ‘‘projection’’ is used to describe the distance of a
point along a vector. To illustrate the point more clearly,
consider the simple three-dimensional Cartesian coordi-
nate system. The x, y, and z axes of this coordinate
system are defined by the vectors i, j, and k, respectively.
The point (3,4,5) has a projection of 3 onto the vector i,
a projection of 4 onto the vector j, and a projection of 5
onto the vector k.

We will illustrate how PCR is performed using simu-
lated data taken from a hypothetical UV-VIS experiment.
This example is an oversimplification, but explains the
technique of PCR in a manner that can be easily
understood without overbearing mathematical descrip-
tions.

The solid line in Fig. 1A shows an example of a UV-VIS
absorption trace of component X at a specific concen-
tration, [X]. The information in the absorption spectrum
of component X can be plotted in a different manner
(Fig. 1B), which shows a plot of the intensities at 425 nm
and 475 nm. Component X has intensities of 0.1 AU and
0 AU at 425 nm and 475 nm, respectively, and can be
represented as the point (0.1, 0) in the two-dimensional
coordinate system shown in Fig. 1B. According to Beer�s
law, if analyte X is doubled ([2X]), tripled ([3X]), and
quadrupled ([4X]), the absorbance spectrum will in-
crease by 2-fold, 3-fold and 4-fold, respectively, as shown
in the dashed lines in Fig. 1A. These absorption spectra
can also be plotted the same way as the first spectrum in
a two-dimensional manner as shown in Fig. 1B (purple
squares). Similarly, component Y, which has a different
absorption spectrum (Fig. 1C) and at concentrations [Y],
[2Y], [3Y] and [4Y] can be plotted in a two-dimensional
manner as shown in Fig. 1D (green diamonds) as mul-
tiples of the point (0, 0.1).

As shown in Fig. 1B and D, lines can be drawn
through the two-dimensional representations of the
absorption spectra of components X and Y. Each of these



Figure 1. Representation of UV-VIS data in an intensity space. A) UV-VIS spectra of component X in concentrations [X] (solid line) to [2X], [3X],
and [4X] (dashed lines). B) Spectra in A) plotted in an intensity coordinate system with intensity at 425 nm on the x-axis and intensity at 475 nm
on the y-axis. C) UV-VIS spectra of component Y in concentrations [Y] (solid line) to [2Y], [3Y], and [4Y] (dotted lines). D) Spectra in C) plotted in
an intensity coordinate system. E) UV-VIS spectra of an unknown mixture of X and Y. F) Spectrum in E) plotted in an intensity coordinate system
with the dotted lines representing projections onto each principal component.

Trends in Analytical Chemistry, Vol. 28, No. 9, 2009 Trends
lines describes important information about the mea-
sured absorption spectra. The horizontal line in Fig. 1B
describes how intensities change based on [X] and the
vertical line in Fig. 1D describes how intensities change
based on [Y]. In this simplified case, moving in a hori-
zontal direction in these graphs describes only how [X] is
changing and says nothing about how [Y] is changing.
Conversely, moving in a vertical direction in these
graphs describes only how [Y] is changing and says
nothing about how [X] is changing. Mathematically
speaking these lines are orthogonal, meaning that each
describes information that the other does not. These
lines, which each describe different information about
the original data drawn in an alternative coordinate
system, can be thought of as principal components (PCs).
Stated another way, PCs can be thought of as vectors in
an abstract coordinate system that describe sources of
variance of a data set. Chemometricians and mathema-
ticians advocate the use of a slightly different definition
of a PC, but our definition is common and is used in
many introductory texts [9–11].

The projection of the points onto the PCs shown in
Fig. 1B and D is related to concentration, just like a
traditional univariate calibration curve. Fig. 1E shows
an example of an absorption spectrum from an unknown
mixture of components X and Y. It can be represented as
the point (0.3, 0.2) in the two-dimensional space de-
picted in Fig. 1F. This unknown sample has a projection
along the horizontal PC of 0.3 and a projection along the
vertical PC of 0.2, corresponding to concentrations of
[3X] and [2Y]. Comparing the unknown spectrum in
Fig. 1E with the standards in Fig. 1B and 1D confirm this
result. Mathematically, the projection onto a PC is re-
lated to concentration by performing a simple least-
squares regression.

In a univariate calibration, known concentrations of
standards are assembled. Peak responses are plotted as a
function of concentration and a regression is performed
relating a measured value to concentration. Finally, the
measured response is projected back onto the calibration
line in order to determine a concentration. PCR is a
multivariate calibration method that works in a similar
manner using up to all the data points in a spectrum
instead of just one. First, a series of known spectra and
concentrations, termed a training set, is assembled.
Second, PCs are calculated and describe relevant por-
tions of the assembled calibration spectra using PCA.
Third, a regression is performed that relates concentra-
tions to distances along PCs. Finally, concentrations are
predicted by projecting an unknown sample onto the
PCs and relating its distance back to concentration [12].

The number of PCs calculated equals the number of
spectra in the training set that are input into the algo-
rithm, but PCs themselves are not always directly
interpretable. The above example showed that one PC
described only component X and one PC described only
component Y, but PCs are abstract and should not be
thought of as belonging solely to one component or as
pure analyte spectra [13]. Sometimes, however, mathe-
matical manipulations can be performed on the PCs in
order to give the user something that relates back to a
specific source of variance in the experiment [14].
http://www.elsevier.com/locate/trac 1129



Trends Trends in Analytical Chemistry, Vol. 28, No. 9, 2009
PCR offers an analytical chemist several advantages.
First, one can separate and retain PCs that describe rel-
evant information and discard PCs that contain noise,
thereby eliminating sources of random error. PCs that
describe relevant information should have larger pro-
jections because they describe more of the collected
dataset than those that describe noise, which should be a
small percentage of the overall measured signal. There
are numerous ways to decide how many PCs to keep, but
all rely on the same basic assumption that PCs that de-
scribe relevant information will describe more of the
collected data than PCs that describe only noise [15–17].
Second, the size of a data matrix is drastically reduced
[6]. An entire spectrum can be replaced by its distance
(or projection) along a few PCs. For example, a data set
comprising a 1000 data-point cyclic voltammogram
measured at 10 Hz for 60 s contains 600,000 data
points. If only three PCs are needed to describe all the
relevant information of the collected data set fully, the
number of data points can be reduced from 600,000
(1000 points x 10 Hz x 60 s) to 1800 (3 x 10 Hz x 60 s),
or 0.3% of the size of the original data set. This example
illustrates how PCA can reduce the dimensionality, or
size, of a data set by orders of magnitude and still keep
the relevant information.

Samples used in multivariate training sets must meet
several requirements [7,18]. First, training set samples
must contain all expected components because concen-
trations obtained may not be accurate if the unknown
Figure 2. PCR deconvolution of in vivo electrochemical data. A) Color plot
moving rat after a stimulation given at 0 s (60 Hz, 24 pulses, 300 lA depic
gram collected at a specific time point and each horizontal slice represen
dashed line represents the oxidation potential of dopamine, 0.6 V. Insets a
at 0 s) and pH (blue, taken at the dashed line at 5 s) with arrows drawn indic
trace at the oxidation potential of dopamine with the red bar marking the
predicted using PCR.
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sample contains spectral information not present in the
training set. Second, training-set samples must uni-
formly span the expected concentrations of each of the
components to ensure that unknown concentrations fall
within the calibration range. Third, training-set samples
must span the conditions of interest in order to account
properly for environmental parameters and sample ma-
trix. Fourth, training-set samples must be mutually
independent. Samples created by serial dilutions are
examples of samples that are not mutually independent
because relative concentrations of the different compo-
nents and relative errors in the concentration values are
do not vary. Finally, there needs to be sufficient training-
set samples to build an accurate model. For infrared
data, ASTM International recommends at least 24
samples for a model that contains up to 3 relevant PCs
and 6 samples per relevant PC for a model with more
than 3 relevant PCs. Unfortunately, this means that a
user will only know if there are enough training-set
samples after a model is constructed.

PCR has been used in order to predict concentrations
of in vivo electroactive species using fast-scan cyclic
voltammetry [6,19,20]. Fig. 2 shows how PCR can be
used to separate neuromodulators dopamine and pH
during stimulated release. A carbon-fiber microelectrode
is placed in a region of the brain containing dopami-
nergic neuron terminals while a stimulating electrode is
placed in a region containing dopaminergic cell bodies.
Fig. 2A displays in vivo cyclic voltammograms in the
representation of cyclic voltammograms taken in the brain of a freely
ted by the red bar). Each vertical slice represents a cyclic voltammo-
ts a current versus time trace at a specific potential. The horizontal
re cyclic voltammograms of dopamine (red, taken at the dashed line
ating the direction of the voltammetric sweep. B) Current versus time
onset of the stimulation. C) Dopamine (DA) and pH concentrations
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form of a color plot, with each vertical slice a cyclic
voltammogram at a specific time point, each horizontal
slice a current versus time trace at a specific potential,
and current in false color. The cyclic voltammograms
taken around 0 s are characteristic of the neurotrans-
mitter dopamine while those taken between 2 s and 10 s
are characteristic of a pH change (Fig. 2A inset). The
increase in dopamine concentration occurs due to local
stimulation given to the cell bodies of dopaminergic
neurons that causes release in the terminal region. The
observed pH response is due to changes in blood flow and
metabolism accompanying terminal activity, which
cause a decrease in carbon dioxide, a component of the
extracellular buffering system of the brain [21]. The
current versus time trace taken at the oxidation potential
of dopamine in Fig. 2B shows a convoluted response
between dopamine and pH so a univariate calibration
would be insufficient to determine dopamine concen-
tration as a function of time. Using a training set of
in vivo cyclic voltammograms of dopamine and pH at
varying intensities, PCR can separate these two compo-
nents and generate concentration traces for each ana-
lyte, as shown in Fig. 2C.
3. PCR model validation

When fitting any calibration model to a data set, uni-
variate or multivariate, an analytical chemist should ask
two questions:

1. How accurate is my calibration model at predicting
concentrations?

2. How applicable is my calibration model to an un-
known data set?

When using multivariate calibrations, the accuracy of
a model is addressed with a process called validation. A
set of test samples distinct from the calibration set with
known concentrations is used to determine the accuracy
of the calibration at predicting unknown concentrations.
The predicted residual error sum-of-squares (PRESS) is
the squared difference between the actual and the pre-
dicted concentrations for all validation samples and
serves as a figure of merit for the multivariate model
[22]. PRESS gives the experimenter an idea of how well
the model can predict new concentrations and how
much error can be expected in the concentrations ob-
tained from the analysis of unknowns. The extra work to
validate a model before running an experiment is nec-
essary; it is better to test the accuracy of a model first
rather than using it blindly on unknowns and hoping for
accuracy [22].

Unfortunately, validation samples are not always
available due to cost, time constraints or other experi-
mental conditions. In these cases, the training set can be
used as a test set in a process called cross validation.
When using cross validation with PCR, the regression is
performed using all the samples of the training set except
one. The concentration of this training set sample is
predicted using the regression model and a PRESS value
is calculated. The excluded sample is reintroduced into
the training set and another training set sample is ex-
cluded and its concentration and PRESS value is esti-
mated and added to the previous PRESS value. The
process is repeated until all of the training set samples
have been estimated and a final PRESS value is calcu-
lated [22].

A PRESS value calculated in this way can also be used
as a measure of the proper number of PCs of a data set to
retain. As more PCs are retained, the PCR model will
predict concentrations more accurately and PRESS
values will decrease. However, there will come a point
where increasing the number of PCs retained does not
significantly improve the accuracy of the prediction and
those PCs should be discarded [12,15,17].
4. PCR model applicability: residual analysis

The accuracy and the applicability of a model are two
distinct questions (vide supra) [23]. Some users of PCR do
not address applicability of their calibration model and
thus assume that the calibration model is always appli-
cable to an unknown data set. Stated another way, one
assumes that the relevant PCs of a data set describe all
relevant information in the unknown data set. Instru-
mental errors (e.g., drift), experimental system errors
(e.g., pressure and temperature) and impurities or
interferents can invalidate this assumption, if they con-
tribute significantly to the measured signal [5,24].

There are situations in which a scientist may not
always know the complete composition of the unknown
data set a priori and will not be able to predict if there are
any unknown components that will significantly affect
the measured response. As an example, in vivo electro-
chemists use fast-scan cyclic voltammetry to measure
electroactive species in the brains of freely moving rats.
Training-set cyclic voltammograms often incorporate
only dopamine and pH but measure in brain regions
containing many electroactive species [25]. If dopamine
and pH are the only significant current contributions to
the overall measurement, concentration data should be
accurate. However, if other electroactive species are
present in concentrations large enough to contribute a
significant amount of current, the training-set cyclic
voltammograms would be insufficient to model all of the
collected data, and concentration data obtained from
PCR would be questionable.

Jackson and Mudholkar proposed a method in order to
evaluate the goodness of fit of training set data to an
unknown data set in PCR using residuals [26,27]. In
general, a residual is defined as the difference between an
experimental observation and a predicted value from a
http://www.elsevier.com/locate/trac 1131
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model. Residual analysis has several advantages, includ-
ing quality-control (QC) monitoring, interferent identifi-
cation and outlier detection. An advantage of working
with multivariate data is that it can sometimes be possible
to visualize the data spectrum of an interferent, something
that is impossible with a univariate measurement.

In PCR, residuals are a measure of the unknown
signal (e.g., current) that is not accounted for by the
retained PCs of the training set. This includes noise and
any signal arising from the response of any interfering
analytes. Ideally, the training set contains all the rele-
vant information of an unknown data set and the
residuals should contain only noise. We will continue to
use in vivo electrochemical data as an example
throughout this section, but the principles apply to all
other fields of analytical chemistry.

The quantity Q is defined as the sum of the squares of
the residual values at each variable in each sample of the
data set. Using in vivo electrochemistry as an example,
one Q value is calculated for each cyclic voltammogram
in the unknown data set by summing the squares of the
current at each potential scanned that was not ac-
counted for by the retained PCs of the training set used,
as shown in Fig. 3. Mathematically, the Q value of a
cyclic voltammogram at time t, Qt, can be represented by

Qt ¼
Xw

x¼1

ði2
x � î2

xÞ ð1Þ

where ix is the current at x point number of the wth point
cyclic voltammogram and îx is the current predicted
from the PCR model containing only the relevant PCs at
x point number of the wth point cyclic voltammogram.
These Qt values are tabulated for each sample and
plotted consecutively for unknown data set to make a Q
plot; the y-axis is in units of nA2 for this example.

4.1. Qa as a measure of significance
The threshold for the sum of the squares of the residuals
(Qa) is a threshold that establishes whether a satisfactory
Figure 3. Calculation of a Q value at a specific time point, t. The cyclic volt
time t in order to obtain a Qt value.
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description of the experimental data by the retained PCs
is achieved. The discarded PCs should contain only noise
and thus provide a measure of a noise level. If the Qt

values exceed Qa, then there is a measured signal that
exceeds the noise anticipated by the PCs discarded. The
value of Qa includes a significance level that can be set
by the user for how much noise can be tolerated.

Qa is calculated using the following equations [26]:

Qa ¼ H1

ca

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2h2

0

q

H1

þ 1þH2h0ðh0 � 1Þ
H2

1

2
4

3
5

1
h0

ð2Þ

Hi ¼
Xn

j¼kþ1

ki
j for i ¼ 1;2; or 3 ð3Þ

h0 ¼ 1� 2H1H3

H2
2

ð4Þ

where ca is the z-score that determines the (1-a)% of
noise that will be tolerated, k is the number of PCs re-
tained to describe all significant signal contributions of
the training set (i.e. if the training set contained 10
cyclic voltammograms, k could vary between 1 and 10,
depending on the number retained), n is the total
number of PCs calculated (10 in the example described
above, because the number of PCs calculated equals the
number of cyclic voltammograms in the training set),
and k is the sum of the squares of the data projections
from all the samples in the training set for each PC. The
remaining terms (H1, H2, and H3, and thus h0) are
simply calculated from the k values of the discarded
noise components ((k + 1) fi n). From this description,
the calculation of Qa is based on only two pieces of
information:

� a noise level threshold (ca); and,
� information contained in the discarded PCs of the

training set (k(k + 1) fi n).
Here, noise is defined as any signal that has a low

probability of containing relevant information [28].
When the PCs of the training set were discarded, they
ammetric representation of residual current is squared and summed at
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were assumed to be irrelevant and thus serve as an
estimated noise level.

Qa is a threshold for significance of the Qt values. Qa is
an upper limit on the amount of noise or random error
that will be tolerated from collected data, based on the
amount of error contained in the discarded PCs of the
training set. A cyclic voltammogram with a Qt value
above this threshold will be considered to contain sig-
nificant information not accounted for by the retained
PCs and concentration values obtained with PCR would
be questionable.

A chief advantage in using PCA is to help separate the
significant deterministic information from non-deter-
ministic error. Deterministic variation is a non-random
change in a signal (e.g., the signature shape of the cyclic
voltammogram that lets one determine its chemical
identity). Non-deterministic noise or error is random and
should thus follow a normal distribution. If Qt exceeds
Qa, then the level of the noise is greater than expected
and may contain deterministic information that is not
accounted for by the retained PCs.

4.2. Interpretation of ca

The ca term in Equation (2) is the z-score corresponding
to the (1-a)% of noise that will be tolerated. Qt values are
the sum of differences of squares and are not normally
distributed. However, Jenson and Solomon [29] have
shown that the quantity (Q/H1)h0 can be approximated
by a normal distribution with a mean (l) and standard
deviation (r), respectively, equal to

l ¼ 1þH2h0ðh0 � 1Þ
H2

1

ð5Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2h2

0

q

H1

ð6Þ

From elementary statistics, a z-score for a normal
distribution is calculated as the difference between an
observed value and the mean, divided by the standard
deviation. This would make the z-score for the (Q/H1)h0

distribution

z ¼
H1 ðQ=H1Þh0 � 1� H2h0ðh0�1Þ

H2
1

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H2h2

0

q ð7Þ

Substituting ca for z and Qa for Q in Equation (7) and
rearranging to solve for Qa gives Equation (2).

Approximately 95% of random, non-deterministic
error will fall below a ca of 1.645 [27]. An unknown
sample will be significantly different from the training set
if its Qt exceeds Qa. Its signal contribution is larger than
were a certain percentage of the signal contributions due
solely to random error. Using our example with a ca of
1.645, a Qt value will be significant (cross Qa) only if its
current contributions are larger than 95% of current
contributions due to random noise. Qa is a measure of
significance, not confidence. If Qt exceeds Qa, Qt has a
significant value and the use of the retained PCs is
insufficient to describe the experimental data. It is
incorrect to say that one is (1-a)% confident that con-
centration data obtained from PC regression is correct if
the residuals do not cross Qa. Accuracy of concentrations
is addressed using validation, but if Qt crosses Qa, the
validation cannot be trusted because significant interf-
erents are present.

As ca increases, Qa increases. As an example,
increasing from 95% to 99% increases ca from 1.645 to
2.326. This increase would mean that a residual (Qt)
would be significant only if it has a current contribution
larger than 99% of current contributions due to random
noise. Qa has to increase because an extra 4% of larger
random-error current contributions will have to be ac-
counted for. Mathematically, Equation (2) shows that
increasing ca increases Qa (ho is less than 1). Also,
decreasing ca decreases Qa, and the smaller the Qt value
will have to be in order to be deemed to contain signif-
icant information.

4.3. Qt crossing Qa

One of three possibilities occurs if Qt crosses Qa:
� First, there is a% chance that random noise would

cross Qa, but, since a is small, this occurrence is not
very probable.

� Second, too many PCs are kept and tolerance for
noise is essentially zero. Each consecutive PC is cal-
culated by determining the maximum amount of
variance present not accounted for by previous
PCs. The first PC describes the largest source of var-
iance in the training set; the second PC describes the
largest source of variance not described by the first
PC, etc. Increasing the number of retained PCs
deems more and more of a data set significant, leav-
ing less to be counted as noise. Thus, if the amount
of noise decreases, the threshold for what is signifi-
cant must also decrease. Mathematically speaking,
Equation (3) decreases as k increases. This possibility
is also not likely if the proper number of PCs is re-
tained.

� The third, and most important, reason that Qt crosses
Qa is because significant deterministic variation is
present in the residual. If Qt crosses Qa, significant
information is present in the residual because the
PCs retained in the training set do not accurately
model all of the significant current contributions in
experimental data set.
Qa is a trigger of significance and is not related to the

accuracy of the predicted concentrations. Qa is a
threshold to determine if significant information is
present in the residual. If Qt does not cross Qa, it means
that all significant signals in the collected data set have
been accounted for, where significance is defined as
http://www.elsevier.com/locate/trac 1133
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having a Qt value larger than (1-a)% of Qt values that
would be calculated by chance from random noise.

Fig. 4 shows how residuals and Qt values can be
visualized for the in vivo electrochemical data set used
previously. Fig. 4B shows a color-plot representation of
the residual currents when both dopamine and pH are
included in the training set. There are no features in the
color plot, suggesting that the training set accurately
describes all relevant sources of information present in
the unknown data set. Furthermore, the Q plot in Fig. 4C
also shows no significant current contributions at the
95% significance level. If the training set used contains
both dopamine and pH, its PCs should describe all the
Figure 4. The use of residual analysis as a diagnostic tool for significance
Residual color plot when both dopamine (DA) and pH were used in the P
the proper number of principal components (PCs) to keep (k = 2) [9,16]. C
at 95% significance. All Q values are below Qa, indicating the PCs of the
D) Residual color plot when only DA was used in the PCR training set. Ma
of PCs to keep (k = 1). E) Qt trace of the residuals from D) with the dashed
region of the color plot, indicating significant information present in the re
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relevant information in the measured color plot leaving
only noise.

However, if we construct a model with a training set
that includes only dopamine, its PCs should fail to de-
scribe all relevant information in the measured color
plot. The residual color plot in Fig. 4D shows features in
the pH region and its Q plot in Fig. 4E crosses Qa at the
95%-significance level, meaning that the dopamine PCs
fail to describe all significant current contributions in the
cyclic voltammograms taken between 2 s and 10 s, so
the concentration values should not be trusted. The
residual cyclic voltammograms do not look identical to
pH, but they have some pH-like features. Residuals
in in vivo electrochemical data. A) Color plot taken from Fig. 2. B)
CR training set. Malinowski�s F-Test was used in order to determine
) Q trace of the residuals from B) with the dashed line marking Qa

training set accurately describe all relevant sources of information.
linowski�s F-Test was used in order to determine the proper number

line marking Qa at 95% significance. Qt values crossed Qa in the pH
sidual.
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cannot always be directly interpreted as an interferent
spectrum, as shown in Fig. 4, but the Q residual plot will
inform the experimenter of any samples in the unknown
data set that possibly contain an interferent [30].

It is not always true that a training set with 4 relevant
PCs will have a larger Qa than a different training set
with 3 relevant PCs. This is an erroneous assumption
because the Qa threshold for two different training sets
cannot be compared in this way. This statement is true
only if one is referring to the same training set when the
PCA decomposition is calculated. The PCs in the two
training sets shown in Fig. 4 are calculated differently
because the two training sets have different sources of
variation (one training set contains dopamine and pH,
and the other training set contains only dopamine).
Further, the pH cyclic voltammograms used in the
training set are noisier than the dopamine cyclic vol-
tammograms, so the training set with only dopamine
cyclic voltammograms contains less noise, so the noise
threshold, and thus Qa, is smaller.

Any multivariate model used should fulfill four
requirements [31]:
� First, it should provide a ‘‘Yes’’ or a ‘‘No’’ answer as to

whether the model used accurately describes all rele-
vant measured responses of an unknown data set.

� The rate of false positives, concluding that the model
does not accurately model all relevant measured re-
sponses of an unknown data set when it actually does,
should also be specified.

� Any relationships that exist between experimental
variables must be taken into account.

� Finally, there should be a way to identify why the
model does not accurately describe an unknown data
set.
All of these points, especially the last, are very inter-

esting to the analytical chemist, and residual analysis is
an excellent tool that meets all of these requirements.
5. Future outlook and conclusions

PCR is a powerful data- analysis tool used in analytical
chemistry [19,20,32,33], but another technique called
partial least-squares (PLS) [34] has become the de facto
standard in multivariate calibration in recent years
due to a technical advantage and availability of com-
mercial software programs [3,35]. PCR calculates each
PC of data matrix to maximize the amount of variance
described without using concentration information, so
there is no guarantee that the calculated PCs are
important for concentration prediction [36]. PLS cal-
culates PCs using concentration information, enabling
better prediction while sacrificing some spectral fit. For
example, if some of the training-set spectra contained a
substantial linear baseline shift, PCA decomposition of
the data matrix would be significantly altered while
PLS should disregard the baseline shift, since it has
little to do with concentration of an analyte. PCR and
PLS have been extensively compared theoretically and
practically. However, despite their theoretical differ-
ence, both methods offer similar predictive abilities
with only a slight advantage to PLS in some cases
[37].

Multivariate techniques offer several advantages over
univariate calibration methods. Noise is more easily re-
moved and interferents can be identified. PCR can dra-
matically reduce the dimensionality of a data set, while
still retaining all the pertinent information. Residual
analysis assures users that the calibration data take into
account all relevant components of measured data and
can identify specific samples that contain significant
amounts of an interfering signal.
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Appendix: Principal. Component Regression
Command Lines

Below is a list of command lines that can be directly
typed into Matlab for any user to begin work with PCR.
These command lines do not include mean-centering
and scaling, which is sometimes necessary before PCR
usage. Anyone interested in performing PCR is urged to
read Kramer before proceeding [9]. As a note, all
matrices are defined by bold letters in the text and any
command lines with an apostrophe (�) indicate the
transpose of a matrix.

To begin, a training set of known spectra and known
concentrations must be assembled under the same
experimental conditions as the unknown. For the fol-
lowing command lines, an (n x m) matrix containing all
spectra must be assembled, such that each column
contains an n-point data spectrum for all m samples in
the training set. Again, for infrared data, ASTM Inter-
national recommends at least 24 samples for a model
that contains up to 3 relevant PCs and 6k samples for a
model with more than 3 relevant PCs [7]. In addition, an
(l x m) concentration matrix containing all known
concentrations must be assembled, such that each row
contains concentrations of each of the l components in
all of the m samples.

The PCs are calculated for the (n x m) training set data
spectrum matrix A using singular value decomposition
(SVD) [38]:
http://www.elsevier.com/locate/trac 1135
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½U; S;V� ¼ svdðAÞ; ðA1Þ
While there are many methods to decide how many

PCs to keep, a simple, yet very subjective method is the
use of a log Scree graph [15]:

plotðlog 10ðdiagðSÞÞÞ; ðA2Þ

Once the number of relevant PCs is known, k, a data
matrix Vc is constructed to contain all the relevant PCs.
For a (n x m) training set data spectrum matrix A, the
PCs are contained in the U matrix from SVD. If the
training set data spectrum matrix A is (m x n), the PCs
are contained in the V matrix from SVD.

Vc ¼ Uð:;1 : ðkÞÞ; ðA3Þ

Next, the projections of the training set data spectra
onto the relevant PCs (Aproj) are calculated:

Aproj ¼ Vc0 � A; ðA4Þ
After the projections are calculated, a regression

matrix relating the data projections to concentrations (F)
is calculated:

F ¼ C � Aproj0 � invðAproj � Aproj0Þ; ðA5Þ

To calculate concentrations, an unknown data set D
in the form of (n x m2) with m2 columns of n-point
spectra must be assembled. Concentrations of each of the
l components in each of the m2 samples, Cu, can be
predicted by first calculating the projections of D onto
the relevant PCs of A and then relating these projections
to concentrations using F:

Dproj ¼ Vc0 � D;ðA6Þ
Cu ¼ F � Dproj;ðA7Þ

The residuals, E, can be calculated by subtracting the
data accounted for by the relevant PCs from the un-
known data set D.

E ¼ D-ðVc � DprojÞ; ðA8Þ
The Q values from Equation (1) can be calculated

using the following command

Q ¼ diagðE0 � EÞ0�; ðA9Þ
Equations (2)–(4) can then be used to calculate Qa in

order to test for significance. The S matrix from Equation
(A1) contains the square roots of k (from Equation (3) in
Section 4.1.) along its diagonal.
References
[1] M.M.C.F.R. Kiralj, J. Chemom. 20 (2006) 247.

[2] Guide for Authors, Chemom. Intellig. Lab. Syst. (2009)

(www.elsevier.com/locate/chemometrics).
1136 http://www.elsevier.com/locate/trac
[3] B. Lavine, J. Workman, Anal. Chem. 80 (2008) 4519.

[4] S.D. Brown, R.S. Bear, Crit. Rev. Anal. Chem. 24 (1993) 99.

[5] R. Bro, Anal. Chim. Acta 500 (2003) 185.

[6] M. Heien, M.A. Johnson, R.M. Wightman, Anal. Chem. 76 (2004)

5697.

[7] ASTM International, Standard Practices for Infrared Multivariate

Quantitative Analysis, Doc. E 1655-00 in ASTM Annual Book of

Standards, Vol. 03.06, ASTM International, West Conshohocken,

PA, USA, 2000.

[8] J.E. Jackson, Principal Component Analysis, Springer Science,

New York, USA, 2004.

[9] R. Kramer, Chemometric Techniques for Quantitative Analysis,

Marcel Dekker, Inc., New York, NY, USA, 1998.

[10] I.T. Jolliffe, Principal Component Analysis, Springer Science, New

York, NY, USA, 2004 p. 6.

[11] P. Ralston, G. DePuy, J.H. Graham, ISA Trans. 43 (2004) 639.

[12] R. Kramer, Chemometric Techniques for Quantitative Analysis,

Marcel Dekker, Inc., New York, NY, USA, 1998 p. 99.

[13] C.D. Brown, R.L. Green, Trends Anal. Chem. 28 (2009) 506.

[14] I.T. Jolliffe, Principal Component Analysis, Springer Science, New

York, NY, USA, 2004 p. 269.

[15] I.T. Jolliffe, Principal Component Analysis, Springer Science, New

York, NY, USA, 2004 p. 111.

[16] E.R. Malinowski, J. Chemom. 4 (1990) 102.

[17] J.E. Jackson, A User�s Guide To Principal Components, John Wiley

& Sons, Inc., New York, NY, USA, 1991 p. 41.

[18] R. Kramer, Chemometric Techniques for Quantitative Analysis,

Marcel Dekker, Inc., New York, NY, USA, 1998 p. 13.

[19] M. Heien, A.S. Khan, J.L. Ariansen, J.F. Cheer, P.E.M. Phillips,

K.M. Wassum, R.M. Wightman, Proc. Natl. Acad. Sci. USA 102

(2005) 10023.

[20] A. Hermans, R.B. Keithley, J.M. Kita, L.A. Sombers, R.M.

Wightman, Anal. Chem. 80 (2008) 4040.

[21] B.J. Venton, D.J. Michael, R.M. Wightman, J. Neurochem. 84

(2003) 373.

[22] R. Kramer, Chemometric Techniques for Quantitative Analysis,

Marcel Dekker, Inc., New York, NY, USA, 1998 p. 17.

[23] M. Daszykowski, B. Walczak, Trends Anal. Chem. 25 (2006)

1081.

[24] P. Nomikos, J.F. Macgregor, Technometrics 37 (1995) 41.

[25] J.B. Justice Jr., Voltammetry in the Neurosciences: Principles,

Methods, and Applications, Humana Press, Clifton, NJ, USA,

1987.

[26] J.E. Jackson, G.S. Mudholkar, Technometrics 21 (1979) 341.

[27] J.E. Jackson, A User�s Guide to Principal Components, John Wiley

& Sons, Inc., New York, NY, USA, 1991 p. 34.

[28] A. Bezegh, J. Janata, Anal. Chem. 59 (1987) A494.

[29] D.R. Jensen, H. Solomon, J. Am. Stat. Assoc. 67 (1972) 898.

[30] D. Jouan-Rimbaud, E. Bouveresse, D.L. Massart, O.E. de Noord,

Anal. Chim. Acta 388 (1999) 283.

[31] J.E. Jackson, A User�s Guide to Principal Components, John Wiley

& Sons, Inc., New York, NY, USA, 1991 p. 21.

[32] F. Fang, S.G. Chu, C.S. Hong, Anal. Chem. 78 (2006) 5412.

[33] T.R.M. De Beer, W.R.G. Baeyens, J. Ouyang, C. Vervaet, J.P.

Remon, Analyst (Cambridge, UK) 131 (2006) 1137.

[34] P. Geladi, B.R. Kowalski, Anal. Chim. Acta 185 (1986) 1.

[35] N.M. Faber, R. Rajko, Anal. Chim. Acta 295 (2007) 98.

[36] E.V. Thomas, D.M. Haaland, Anal. Chem. 62 (1990) 1091.

[37] P.D. Wentzell, L.V. Montoto, Chemom. Intell. Lab. Syst. 65 (2003)

257.

[38] R.W. Hendler, R.I. Shrager, J. Biochem. Biophys. Methods 28

(1994) 1.

http://www.elsevier.com/locate/chemometrics

	Multivariate concentration determination using principal component regression with residual analysis
	Introduction
	Multivariate analysis in analytical chemistry
	Principal component regression

	PCR model validation
	PCR model applicability: residual analysis
	Qα as a measure of significance
	Interpretation of cα
	Qt crossing Qα

	Future outlook and conclusions
	Acknowledgements
	Component Regression Command Lines
	References


