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We applied two methods of “blind” spectral decomposition (MILCA and SNICA) to quantitative and
qualitative analyses of UV absorption spectra of several non-trivial mixture types. Both methods use the
concept of statistical independence and aim at the reconstruction of minimally dependent components from
a linear mixture. We examined mixtures of major ecotoxicants (aromatic and polyaromatic hydrocarbons),
amino acids and complex mixtures of vitamins in a veterinary drug. Both MICLA and SNICA were able to
recover concentrations and individual spectra with minimal errors comparable with instrumental noise. In
most cases their performance was similar to or better than that of other chemometric methods such as MCR-
ALS, SIMPLISMA, RADICAL, JADE and FastICA. These results suggest that the ICA methods used in this study
are suitable for real life applications.
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1. Introduction

Quantitative spectroscopic methods have offered widely used
analytical tools while themselves being a subject of active research
and development. These methods open a window into exploring
complex mixtures by combining some unique features, including a
unified approach (many of them treat various spectral signals – e.g. IR,
UV, visible, scattering, EPR, time-resolved – in a single manner), non-
destructive measurements (especially important for in vivo analysis of
natural samples) and an opportunity to separate measurements and
data processing.

The most challenging problems in mixture decomposition are the
estimation of the number of most significant mixture components,
identification of the chemical nature of the components and
estimation of their concentrations. When only mixed spectral signals
are available, analysts speak of a “black mixture” (drawing a line to
the “black box” [1]). However, a priori information about the mixture
composition and/or further assumptions act to “whiten” the problem,
formalize it and make numerical predictions feasible. We will now
review what different approaches offer along these lines.

Having experimental spectra of pure mixture constituents at hand
reduces quantitative mixture analysis to linear algebra. Evidently,
there are some considerable difficulties on that route. Indeed, routine
production of standard samples has proved to be cumbersome and
expensive. Besides, now it is almost impossible to make a set of
standard samples to meet the wide and growing range of suspected
compounds that typically fall under analysis. For instance, as many as
about 700major contaminants are standardized in the course of water
and air control [2]. Obviously, even in this case forming a reliable
database of high-quality standards would hardly be realistic. This has
triggered research into alternatives.

Methods for molecular modeling and theory of spectra suggested a
key to standardless mixture analysis [2,3]. A breakthrough was made
by substituting natural samples by their mathematical counterparts,
i.e. calculated spectra of molecular models for the presumed mixture
constituents. These approaches look quite promising in environmen-
tal analysis where standard samples make almost no practical sense.
As of today chemists recognize more than 10 million individual
chemical substances. Taking persistent molecular transformations
into account, the actual number is unknown and is growing.

Furthermore, it turned out that the use of time-resolved spectra
[3–5] opens up an opportunity to make mixture analysis completely
free of standards (based on experimental data only). This has been
shown possible due to the information presented by the dynamics of
spectral lines [6–8].

The above two variants that originate from computational
spectroscopy have several of essential features in common, and
namely they: (i) make qualitative assumptions about the mixture
constituents and (ii) predict the mixture composition (quantitative
analysis) throughmodeling the analytical signal (computing intensity
distributions in wavelength and/or time for molecular models).

In parallel, a representative arsenal of more than 20 alternative
and competingmethods for mixture analysis has been developed over
the past 30 years in chemometrics (see the reviews, e.g., in [1,9–18]).
These methods are focused to seek a solution to the “black mixture”
problem by resorting to an abstract mixture model as superposition of
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unknown components with no assumptions about their molecular
structure or type of spectra. The chemometrics methods pioneered in
spectral analysis by Lawton and Sylvestre [19] are targeted at making
quantitative predictions about the concentrations and pure compo-
nent spectra (self-modeling solution).

Mixture systems often contain molecules with similar or identical
structural groups. Plus, in certain cases analysis is complicated by
extensive spectral details (e.g., vibration structure in UV spectra of
polyaromatic hydrocarbons, PAHs). Chemical analysis of such mix-
tures is a non-trivial task, which stimulates searches for efficient
techniques. One of the approaches developed in chemometrics is
based on identification of “pure variables” for all mixture components
[20]. A pure variable is a frequency (wavelength) at which the
contribution from one of the components dominates. The pure
variables, thus, approximately mark the regions where at least one
of the spectral components is independent from all others.

The principal difficulty here is themanifold of self-modeling solutions
(including some physicallymeaningless ones such as thosewith negative
concentrations or non-positive spectra). To guarantee obtaining unique
solutions, several constraints and empirical criteria have been proposed
(non-negativity, assumed spectral shapes, closure, choice of active
spectral bands, etc.). Also, the resulting decomposed pure spectra are, in
a sense, abstract and require identification (either automated through
spectral databases search or by experts). In contrast with molecular
modeling and standard sample techniques, here quantification (i.e. blind
reconstructionsof abstractmixturecomponents and their concentrations)
goes prior to qualitative analysis (identification of chemical structures).

In awider context, decomposition of arbitrarymixed signals into pure
components has received considerable attention and remains the subject
of extensive research in signal processing with numerous applications in
telecommunications, geophysics, image processing, bioinformatics, and
medicine. This set of approaches, generally termed “blind source
separation” (BSS), has itsmost developed branch known as “independent
component analysis” (ICA) [21,22]. Basic ICA solves the decomposition
problemassuming linearity of themixture and statistical independence of
individual stationary signals. In some interpretations, ICA can be
considered as an extension of principal component analysis (PCA), a
building block of many chemometrics methods. ICA methods differ in
numerical measures of statistical independence and approximations.
Recently, the focus in ICA research has shifted to improving performance
and accuracy. One of these high fidelity universal ICA techniques –MILCA
(Mutual Information Least Dependent Component Analysis [23]) – is
employed in the present study. MILCA is based on the search for least
dependent (in contrast to independent) mixture components gauged by
precise numerical estimates of mutual information [24] as a measure of
signal dependence.

There have been noticeable evidences that universal BSS/ICAmethods
merge actively into the field of applications in spectroscopy and
chemometrics. As the literature surveys indicate, the number of practical
analytical problems solvedby thesemethodshas increasedat least tenfold
over the last decade. In analytical spectroscopy, BSS/ICA can be classified
as standardless and self-modeling techniques. Equally important is also
the reverse-specifics of spectral experiment suggest optimal algorithms
for independent component analysis [25]. One of the algorithms used in
this paper, SNICA (Stochastic Non-Negative Independent Component
Analysis [26]), was motivated by spectroscopy applications. It naturally
combines efficient decomposition through minimization of mutual
information between components and non-negativity constraint. The
latter is characteristic to many types of experimental spectral data.
Building upon statistically representative ensembles of synthetic and
experimental mixtures, numerical experiments have shown that MILCA
and SNICA outperform specialized chemometrics and other ICA algo-
rithms on typical blind source separation problems, including spectro-
scopic problems [23,25,26]. This article examines the proposed methods
in analytical practice. It reports on a series of case studies which evaluate
the performance of MILCA and SNICA methods on real problems judged
by the quality criteria and standards adopted in chemistry. The mixtures
under analysis differ inmixture design, spectral bandwidths, the extent of
band overlaps and wavelength counts. These factors together with user
experience allow evaluating the method from a practical analytical
perspective.

2. Computational methods

In a common with chemometrics formulation, the linear ICA
problem can be presented as:

X = AS; ð1Þ

where X is a M×N matrix of M measured mixture spectra, S is a K×N
matrix of K unknown spectra of pure components (here N denotes the
number of counts over wavelength), A is a M×K mixture matrix
(unknown concentrations). The task is to reconstruct S and A
(prediction) given the observed X, assuming that the original pure
components are mutually as independent as possible (hypothesis
constraining the manifold of solutions).

Then the idea of ICA application to the mixture decomposition is
based on the following considerations. The pure component spectra
show only weak dependences (although they do not have to be
assumed strictly independent in the statistical sense [24,25]). These
dependences will be stronger if the components are similar. Mixing
make the observed signals Xmore dependent than the pure sources S.
ICA then seeks a transformation that “compensates” for the
dependences caused by mixing, i.e. a decomposition matrix W (the
resulting estimate for A−1) such that it minimizes interdependencies
in Y=W X (the resulting estimates for S). ICA relies on mutual
information I(Y) as a quantitative measure of statistical dependence.
Signals (rows of Y) are considered statistically independent and have
zero mutual information if their joint distribution factorizes into
individual distributions.

The basic MILCA method [23] uses precise numerical estimates for
mutual information based on a nearest neighbors algorithm [24]
(parameterized by the number of nearest neighbors Knn) and makes
no assumptions about the individual distributions of source (pure)
signals. SNICA is a method dedicated to analysis of non-negative
signals and performs best on signals with intensity distributions
peaked at zero (the case typical in spectroscopy). Like ALS
(alternating least squares), SNICA has non-negativity constraints.
The non-negativity constraint in tandem with the “minimal depen-
dence” assumption made it possible to exclude the sometimes
detrimental PCA preprocessing altogether [25,26] and achieve better
performance in the case of dependent pure components. The method
is build upon Monte-Carlo minimization and simulated annealing to
avoid spurious solutions. The essential SNICA parameters [26] are the
number of nearest neighbors Knn, Monte-Carlo initial step size h0,
“temperature” T and stopping criterion M. The efficiency of ICA
methods on spectral data can be considerably improved by
performing decomposition in derivative space (derivatives of spectral
curves with respect to wavelength using finite differences, smoothing
Savitzky-Golay filters, splines [23,25,26]). ICA solutions Y and W are
scale and permutation invariant that is why only relative concentra-
tions and spectral curves in relative units make physical sense while
analyzing ICA outputs.

In a real analytical experiment the true concentrations and
components are unknownwhich calls for empirical criteria or indirect
indications of decomposition performance. The following results may
be considered indicative of incomplete decomposition: a combination
of positive and negative resulting concentrations for some compo-
nents, alternating sign spectral curves, slow convergence of Monte-
Carlo optimization and W close to unit matrix (in case of SNICA),
numerical noise in the output, significant variance of mutual
information of components recovered by different methods or with
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respect to small variations of method parameters for a fixed mixture.
For some analytically difficult mixtures a combination of decompo-
sition methods or Monte-Carlo-like optimization of method para-
meters may be advantageous.

One should realize however that the ICA methods are not entirely
standardless. The decomposition techniques do not require training
data sets or specialized methods for reconstruct matrices S and A. In
essence, ICA methods provide a “blind” decomposition to resolve
spectra and the relative concentration profiles of all coexisting
substances. But one needs standard samples and/or library spectra
to identify resolved compounds and compute their concentration
profiles in physical units. There are some alternatives to solve this
problem depending on available resources and analyst's preferences.

It is commonly accepted that mixtures under analysis fall into
three groups: white, gray and black [1]. The white mixtures are the
easiest one because information about all chemical species and
coexisting interferents is available. Quantitative analysis of that sort of
systems is now well-grounded. Black mixtures, as mentioned in the
previous section, are those for which no information is available. In
such cases once the resolved spectra obtained qualitative analysis can
be performed based on library spectra (for example, NIST database
[27]) or spectra of expected substances recorded in laboratory. The
latter is preferable because reference spectral signal should be taken
in one experimental setting. This technique is widely used in this
paper.

Further, in the quantification step, one needs samples of known
concentration for the resolved chemical components. Here all
methods developed for white systems are suitable (one can try MLR
or PLS methods). Also analyst can determine concentrations by self-
modeling decomposition of spectral data of objects with standard
additions of substances under analysis. The basis of the method is the
comparison responses of a mixture sample of unknown concentra-
tions with the responses obtained after adding standards of known
concentrations. This method is very useful when matrix effect should
be evaluated. Likewise, one can quantify only one compound in the
mixture by alternative technique and then reproduce other abun-
dances. In addition, in cases where total concentration is known
quantitative analysis can rely only on relative ICA concentrations.
Possible ways to verify results include the method of standard
additives, comparison with other chemometrics techniques or
reference method, if it exists. Thus, the strategy on quantitative step
for black systems should ideally transform black system into a white
or gray.

In this article concentrations of components in absolute (physical)
units in model mixtures were calculated using the known total molar
concentration of the systems and relative ICA concentrations. For the
real object («Nitamin» drug), the actual concentrations were deter-
mined by decomposition of medicine spectra with known standard
additives of all vitamins.

MILCA, SNICA, and the mutual information algorithm are imple-
mented as standalone executables for Windows/Linux and also have
MATLAB interfaces. The download packages along with the GPL open
sources are available for free at the website [28]. To compute matrix
inverse we used the Moore–Penrose method and LAPACK algorithms
[29] (MATLAB implementations). We also made some experimental
data used in this paper available at [28].

3. Experimental

The UV–VIS spectra were recorded at 0.1, 0.2, 0.5, 1 nm resolution
on Cary-100, HP8452A and SHIMADZU-1800 spectrometers with the
cells having path-lengths of 0.2 and 1 cm. It is necessary that the
number of mixture spectra must be equal or greater than the number
of compounds in the mixture.

For our study we selected chemical systems analysis of which is
often a rather complicated task. First, we studied multicomponent
mixtures of organic substances that are very important in environ-
mental analysis, specifically, aromatic compounds (benzene, toluene,
and xylene) and polyaromatic hydrocarbons. Further, we investigated
two classes of biologically active substances — vitamins and amino
acids. Complex mixtures of vitamins represent a class of organic
compounds which have to be mixed and then checked with great
precision. Separation and analysis of amino acids and their derivatives
are often used in determination of amino acid composition of complex
proteins, peptide sequencing and in diagnostics of metabolic
disorders.

Currently the determination of above mentioned compounds is
carried out using chromatographic techniques, voltamperometric and
potentiometricmethods. However, time constraints and other limitations
make these techniques unsuitable for routine analysis. One problem that
hinders a wider application of fluorescence and absorption spectroscopy
in environmental monitoring is the lack of selectivity of spectroscopic
measurements causedby strongly overlappingbandsof these compounds
[30].

Thus, the problem of simultaneous determination of specified
substances in complex objects is a really actual issue. Chemometrics
approaches presented in this study can offer a solution to this problem
and open a window into simple, reliable and fast exploration of
complex systems.

All materials and solvents used were of analytical-reagent grade.
Solutions of PAHs (10−3 М) were prepared by weighing and transferring
appropriate amount of reagents to 25 ml volumetric flasks, dissolved and
completed to volume with hexane. Working solutions of benzene,
toluene, and o-xylene were made by dissolving appropriate volume of
reagents in hexane. To prepare samples for registration, further dilutions
from each stock solution were made using hexane.

Solutions of vitamins (В6, В9 and В12) for analysis of model
systems were prepared by transferring 0.5 g of each compound to
100 ml volumetric flasks, adding 1 ml of triethanolamine and
dissolving in distilled water. Then we adjusted pH to 7.5 with 10%
solution of hydrochloric acid. Solutions for recordings were made by
dissolving working solution with distilled water. Solutions of C, PP, B6
vitamins (10−2 mol/l) were prepared by weighing, dissolved and
completed to volume with hydrochloric acid (0.1 mol/l).

Working solution of a veterinary drug «Nitamin» was made by
dissolving 1 ml of the original medicine in 100 ml volumetric flask
with distilled water. Vitamin C sample wasmade by dissolving 0.5 g of
substance in 100 ml volumetric flask with distilled water. Solutions of
vitamins E and Awere prepared by dissolving accurate amount of 0.25
and 0.294 g respectively in Solutol HS15 and then dissolved in
distilled water in volumetric flasks of 50 and 100 ml respectively.
Recorded spectra were adjusted to pH 6–80–6.90 with 10% solution of
hydrochloric acid and 10% sodium hydroxide.

Working solutions of amino acids were prepared by weighing
appropriate amount of compound and then dissolving in bidistilled
water.

Detailed description of all data sets (resolution, number of points)
is provided in Table 1.

For all calculations we use Matlab v. 7.0 (The Math Works, Natick,
MA,USA)andPLS-Toolboxv.5.2 (Eigenvector research,Wenatchee,WA,
USA). Computational time in all cases under consideration was below
10min per system (mixture) including preparation of the samples.

To characterize similarity between experimental and calculated
matrixes we apply Amari index:

Perr =
1
2N

∑
N

i;j=1

jpijj
maxkjpikj

+
jpijj

maxkjpkjj

 !
−1; ð2Þ

where pij = ðÂ−1AÞij.
The Amari index vanishes when the recovered concentrations

differ from the true ones only in scaling and permutation of



Table 1
Quantitative ICA analysis of organic mixtures (n represents number of components in the mixture).

System Mixture Conditions of decomposition Concentration
range, М∙10−n

Maximum relative error
of quantitative analysis,
%

1. Aromatic hydrocarbons Benzene–toluene MILCA, first derivatives, 0.2 nm spectra resolution,
n×250 (230–280 nm) data set, Knn=6–15

1.7–7.5 ∙102 6.0
O-xylene–benzene 1.7–7.5 ∙102 10
O-xylene–toluene 1.7–7.5 ∙102 5.0
Benzene–toluene–o-
xylene (Figs. 1 and 6)

1.3–10 ∙102 12

2. Polyaromatic hydrocarbons
(see the numbering of components in text)

1–2–3 SNICA, 0.5 nm spectra resolution, 3×400 (200–
400 nm) data set, h0=0.2, T=6.6, M=2500, Knn=15

5.0–10 ∙106 6.0

1–3–4–5 (Fig. 2) MILCA, first derivatives, 4×400 (200–400 nm) data
set, 0.5 nm spectra resolution, Knn=6

5.0–10 ∙106 8.0

1–2–3–4 MILCA, first derivatives, 4×400 (200–400 nm) data
set, 0.5 nm spectra resolution, Knn=12

5.0–10 ∙106 8.0

1–2–3–9 MILCA, first derivatives, 4×400 (200–400 nm) data
set, 0.5 nm spectra resolution, Knn=9

0.0–20 ∙106 10

2–3–6–7–8–9 MILCA, first derivatives, 6×1000 (200–400 nm) data
set, 0.2 nm spectra resolution, Knn=9

5.0–10 ∙106 13

3. Vitamins В6–В9 MILCA, first derivatives, n×200 (200–400 nm) data
set, 1 nm spectra resolution, Knn=5–9

2.3–16 ∙105 8.0
В6–В9–В12 (Fig. 3) 2.3–11 ∙105 10

4. Amino acids Tyrosine–tryptophane
(Figs. 5 and 6)

MILCA, first derivatives, n×85 (205–290 nm) data set,
1 nm spectra resolution, Knn=5–15

0.5–7.5 ∙104 10

Tyrosine–creatinine 0.6–5.0 ∙104 8
Tyrosine–tryptophane–
creatinine

0.5–3.0 ∙104 11

111Y.B. Monakhova et al. / Chemometrics and Intelligent Laboratory Systems 103 (2010) 108–115
components, and it increases as the quality of decomposition becomes
poor. Thus, small values of the Amari index are desirable. (In practice,
we find that good decomposition quality roughly corresponds to
Amari indices Pb0.05, whereas PN0.2 generally characterizes unac-
ceptably poor performance).

We compared well-known and freely available MCR-ALS [31,32],
SIMPLISMA [21,33] methods as well as JADE [34], RADICAL [35] and
FastICA [36] algorithms with MILCA and SNICA. In the present study
we use resolved MILCA spectra as initial estimates for MCR-ALS.
During the ALS optimization, we applied non-negativity constraints to
model the shapes of both the spectra and concentration profiles.

To assess the similarities between the normalized resolved and the
original experimental (pure) spectra, we use frequently applied
correlation coefficient (R). Normalized spectra were obtained by
dividing every absorbance on the maximum value per spectrum.

Before recording spectra for decomposition the influence of
different factors (noise, step of spectral scan and scan speed) on
decomposition performance has been investigated and the optimal
conditions for spectroscopic registration have been identified.
Specifically, 0.5–2 nm spectral resolution and medium speed scan
were found to give sufficient accuracy of analysis together with short
registration time for our systems.

All experiments were repeated three times, the tables report mean
values together with standard deviations. The details of decomposi-
tion runs (derivative space where used, the values of Knn, scan step)
are attached to the tables with quantitative results.

4. Results

4.1. Aromatic compounds (benzene–toluene–xylene)

We selected two- and three-component mixtures with various
concentrations of benzene, toluene and o-xylene for analysis.
Experimental spectra of ternary benzene–toluene–o-xylene mixtures
are shown on Fig. 1A. MILCA was used to perform decomposition. The
results of qualitative (Fig. 1B) and quantitative (Table 1) analyses
indicate a very good fit with the “ground truth” data. The relative
quantification error in concentrations was 12% for ternary systems,
the locations of absorption bands were determined with the 0.5 nm
accuracy, which is comparable with instrumental errors (the worst
spectrum estimate was achieved for benzene (R=0.96)). Original
experimentally measured sources and obtained IC are shown in
Fig. 6A.
4.2. Polyaromatic hydrocarborns (PAHs)

To examine the applicability of ICA in qualitative and quantitative
analyses of PAHs we decomposed various multicomponent mixtures
with different compositions (up to 6 substances). The following
compounds were chosen in our analysis: anthracene (1), pyrene (2),
phenantrene (3), benz[a]antracene (4), benz[a]phenantrene (5),
fluorantene (6), 1-aminopyrene (7), 1-bromopyrene (8), and 1-
pyrenecarboxyaldehyde (9). Mixtures were diversified in the number
of components and composition.

We study anthracene–pyrene–phenantrene system as a mixture of
three typical PAH representatives. The recovered and experimental
spectra are almost identical with the relative error in locations of
absorption peaks less than 0.5 nm and values of correlation coefficients
are not less than 0.96. Table 1 shows that the relative error in
concentration for ternary mixtures is below 5%.

We also tested four- and six-componentmixtures. As an example, the
experimental spectra of four-component anthracene–phenantrene–benz
[a]antracene–benz[a]phenantrene system along with the results of
qualitative analysis are shown on Fig. 2. Table 1 demonstrates the results
of quantitative analysis of the above mentioned and some other systems
of PAHs with varying composition. The quantification uncertainties were
below 10%, which is indication of suitability and robustness of MILCA
algorithm on this class of mixtures and molecular structures.

Next, an important issue of ICA decomposition is the determination of
the concentration range of all substances which one can reliably quantify
withgivenaccuracy.Weprobeda concentration range (ranging from1:15
to 15:1 in ratio) and evaluateddecomposition accuracy onbinarypyrene–
phenantrene system. We found that reliable qualitative analysis can be
performed even for mixtures with extreme concentration ratios.
Quantitative analysis manifests some explainable accuracy degradation
at low and high concentration ratios where also instrumental errors may
be significant. Our data indicate that simultaneous quantitative analysis is



Fig. 1. A: Experimental spectra of mixtures consisted of benzene, toluene, and o-xylene:
Relative concentrations investigated are 5:5:5 (mix1), 5:10:1.3 (mix2), and 10:2.5:5
(mix3), where 1 corresponds to 0.01 M. Cell pathlength was set to 0.1 cm. B: Normalized
resolved spectra. Correlation coefficients for each resolved spectrawith “ground truth” are
given in brackets on all figures (method MILCA).

Fig. 2. A. Experimental spectra of the four-component system consisted of anthracene,
benz[a]phenantrene, benz[a]antracene, and phenantrene. Following relative concentra-
tions were investigated 6:6:5:3 (mix1), 4:4:7:7 (mix2), 3:6:10:10 (mix3), and 5:5:5:5
(mix4), where 1 corresponds to 10−6 М. Cell pathlength was set to 1 cm. B: Normalized
resolved spectra (method MILCA).
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possible formixtures in concentration interval 1.3–20 ∙106 Мwith relative
error below 15%.

4.3. Complex mixtures of vitamins

The analysis of multicomponent vitamin mixtures without
chemical separation of constituents is a rather difficult task. Derivative
spectrometry has been used for the mixture analysis of three vitamins
with overlapping spectra (B1–B6–B12) by zero-crossing measure-
ments [37]. However, sometimes the derivative techniques cannot
cope with the level of interference especially when the spectra are
strongly overlapped or in case of complex mixtures or where mixture
composition is unknown.

We examine mixtures of vitamin pairs and triplets. As an example,
experimental spectra and the results of qualitative analysis of the three-
component system B6–B9–B12 are shown on Fig. 3. It can be observed
that calculated and experimental spectra correlate well. Quantitative
analysis is reported in Table 1 with the relative error in concentrations
below 8%.

Approbation of ICA decomposition algorithms on real objects is of
great practical interest, especially where mixture composition is not
known exactly. Herewe applyMILCA to analysis of vitamins in a complex
multivitamin veterinary drug «Nitamin». Themedicine contains amixture
of three vitamins (A, E and C) in a complex matrix (12 compounds in
total). This fact makes quantitative chromatographic analysis very
difficult.

We registered the spectra of solutions prepared by mixing the
appropriate quantities of the medicine with standard addition of all
vitamins (Fig. 4A). The pH level was kept constant in order to prevent
spectral band shifts. Spectra of individual vitamins were extracted
(Fig. 4B) and the concentrations of compounds in original medicine
were obtained within 10% relative error (Table 2).

Typically, analysis of vitamins in complex mixtures by ICA
methods took about 5 min. Given the accuracy achieved, this makes
ICA decomposition an attractive express analytical alternative.

4.4. Amino acids

In this study we analyzed binary and ternary mixtures of amino
acids which have strong absorption in UV region (tyrosine and
tryptophan) and creatinine (the final product of protein metabolism)
in the wide concentration range (Table 1). All mentioned compounds

image of Fig.�2


Fig. 3. A: Experimental spectra of the ternary system of vitamins В6, В9 and В12.
Following relative concentrations were investigated 53:23:7.7 (mix1), 110:23:7.7
(mix2), and 53:46:54 (mix3) where 1 corresponds to 10−6 М. Cell pathlength was set
to 1 cm. B: Normalized resolved spectra (method MILCA).

Fig. 4. A: Dashed black line (mix0) corresponds to absorption spectrum of the
«Nitamin» drug (1/100 dilution). Other lines show experimental spectra of “Nitamin”
with added vitamins C (mix1, c=2.8 ∙10−5 М), E (mix2, c=1.1 ∙10−5 М), and A (mix3,
c=2.0 ∙10−4 М). Cell pathlength was set to 1 cm. B: Normalized resolved spectra
(method MILCA).

Table 2
Abundances and quantitative analysis (MILCA) of vitamins in the «Nitamin» drug.

No. Compound Concentration, mass % Found, mass %

1. Vitamin А 2.9 3.2±0.4
2. Vitamin Е 5.0 4.6±0.5
3. Vitamin С 10 11±1

(Conditions: first derivatives, 1 nm spectra resolution, Knn=5).
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can be found in one biological object. Fig. 5 and Table 1 contain both
quantitative and qualitative results of analysis of selected compounds.
Maximum relative error was found to be 11%. Original experimentally
measured sources and obtained IC are shown in Fig. 6B.

5. Discussion

In the previous section we have demonstrated that the pure
component spectra of the constituents in complex mixtures could
effectively be recovered using the new ICA algorithms. Correlation
coefficients close to one were obtained between estimated and
reference spectra even though sources had highly overlapping
spectral bands (for examples, in case of aromatic compounds)
(Figs. 1–5). Additionally, as Fig. 6 demonstrates, the estimated IC's
spectra are similar to the “ground truth” data and can be used in
identification of mixture component. It was also possible to obtain
concentration profiles (in relative units) of components in the
mixture.

It has been shown that different ICA algorithms can be successfully
applied in various research areas [23–26,38–40] but the accuracy of an
ICA algorithm used for different kinds of spectral data may not be the
same [38]. So far there is no general criterion for selection of ICA
algorithm in signal processing for analytical chemistry therefore
comparison of the new ICA algorithms with available techniques is
necessary. We provided comparison of new algorithms with estab-
lished multivariate curve resolution methods namely, MCR-ALS,
SIMPLISMA and other available ICA algorithms. We found that the
performance of SNICA and especially MILCA is superior to known ICA
techniques and is comparable with MCR-ALS — well-known chemo-
metrics tool for spectra decomposition. It has been shown that some
ICA algorithms (Radical, JADE and FastICA) show considerably lower
performance [26]. We confirmed these results for the mixtures
studied in this paper. We believe that MILCA outperforms SNICA
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Fig. 5. A: Absorption spectra of the binary system tyrosine–tryptophane. Mixtures were
measured with relative concentrations 5:5 (mix1) and 1:2.5 (mix2), where 1
corresponds to 10−5 М. Cell pathlength was set to 1 cm. B: Normalized resolved
spectra (method MILCA).

Fig. 6. Comparison of sources obtained with MILCA (shown in gray) and the
corresponding experimental measurement (shown in black) for benzene–toluene–o-
xylene (A) and tyrosine–tryptophane (B) systems.
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algorithm due to the special properties of individual distributions of
UV spectra. Although neither MILCA nor SNICA make strict assump-
tions of source signals [23–26], it has been found that MILCA performs
very well on various types of distributions, while SNICA achieves its
optimal performance on zero-peaked distributions (as compared to
other types of distributions). This suggests that MILCA may be more
efficient on UV–VIS spectra than, for example, FTIR spectra.

We showed (Tables 1, 3, and 4) that quality of decomposition
depends strongly on the degree of spectral overlap, spectral band
width and number of components in the mixture. In cases when there
is little dependence between components (which usually means little
spectral overlap) the decomposition will be better. But this does not
imply that one could not analyze systemswith severe spectral overlap
Table 3
Performance of different algorithms for decomposition of multicomponent mixtures (in Am

MILCA S

Benzene–toluene–o-xylene 0.06 0
Anthracene–pyrene–phenantrene 0.06 0
Anthracene–phenantrene–benz[a]antracene–benz[a] phenantrene 0.08 0
B6–B9–B12 0.05 0
Tyrosine–tryptophane 0.10 0
as for example in benzene–toluene–xylene system. The mean value of
pairwise correlation coefficients (a measure of signal dependence) of
experimental signals in this system is 0.80 which is much higher than
for B6–B9–B12 system (0.44) with smaller spectral overlap. The
satisfactory resolution for this system was obtained regardless of the
highly overlapping mixture signals (see Fig. 1). Therefore our
methods can be applied to the signals obtained from complex systems
which consist of components with highly overlapped spectra.

As a rule, decomposition of multicomponent mixtures with well-
developed vibrational structure in UV spectra (PAHs for example) is
higher in quality than that of systems with broad spectral peaks. This can
be explained by noting that statistical independence can be more easily
and accurately assessed for appropriately resolved structured spectral
ari indexes units).

NICA MCR-ALS SIMPLISMA RADICAL JADE Fast ICA

.10 0.0075 0.40 0.19 0.37 0.10

.09 0.07 0.13 0.35 0.10 0.16

.08 0.01 0.07 0.30 0.12 0.11

.10 0.03 0.02 0.25 0.18 0.21

.20 0.08 0.30 0.35 0.11 0.14

image of Fig.�5
image of Fig.�6


Table 4
Correlation coefficients between resoled and experimental spectra.

System Compound Algorithm

MILCA MCR-
ALS

SIMPLISMA

Benzene–toluene–o-xylene Benzene 0.96 1.0 0.92
Toluene 1.0 0.99 0.84
O-xylene 1.0 0.99 0.73

Anthracene–pyrene–phenantrene Anthracene 1.0 0.99 1.0
Pyrene 0.98 1.0 0.96
Phenantrene 0.99 1.0 0.79

Anthracene–phenantrene–benz[a]
antracene–benz[a] phenantrene

Anthracene 0.95 1.0 1.0
Phenantrene 0.99 0.95 0.65
Benz[a]
antracene

0.96 0.96 0.80

Benz[a]
phenantrene

0.99 0.98 0.85

B6–B9–B12 B6 0.93 1.0 0.98
B9 0.99 1.0 0.91
B12 0.98 1.0 0.94

Tyrosine–tryptophane Tyrosine 0.97 0.98 0.98
Tryptophane 0.98 0.99 1.0
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signals. Finally, the greater the number of components in themixture the
lower performance of the ICA algorithms. This is a general conclusion for
all ICA techniques.

Thus, our results again indicate that new algorithms are suitable
for analysis of constituents in complex mixtures even in cases when a
severe spectral overlap exists.

6. Conclusions

In this article we tested two new ICA based methods (MILCA and
SNICA) for spectral decomposition on real analytical problems. The
data for these tests were obtained from chemical experiments which
had all instrumental factors naturally present. Both methods have
been extensively used to provide blind decomposition (curve
resolution) of several mixtures ranging in the number of components,
the origin of mixture constituents, registration conditions, complexity
of spectral data, resolution, various sorts of imperfections. Here we
emphasize that these methods do not require a priori information, the
only inputs are experimental spectral data for mixtures. The resulting
relative concentrations are weighted by the intensities of normalized
pure spectra and do not require specialized calibration methods to
quantify. The methods have proven to be capable of providing robust
results within acceptable accuracy ranges. We estimate that the
relative errors in recovered concentrations are at the level of several
percents with the localization of peak positions comparable with
instrumental uncertainties (below 1 nm for the registration techni-
ques used). Performance of MILCA and SNICA was compared against
several chemometrics techniques (MCR-ALS, SIMPLISMA, other ICA
algorithms). Our results show that MILCA and SNICA are comparable
and in some cases outperform specialized chemometrics algorithms
for spectra decomposition problems.

These numerical results are indicative of suitability of MILCA and
SNICA as a reliable analytical tool in real life applications. ICA
decomposition capabilities now complement spectral experiment
making it a perspective instrument for mixture analysis.
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