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Virtual screening, or in silico screening, is a new
approach attracting increasing levels of interest
in the pharmaceutical industry as a productive
and cost-effective technology in the search for
novel lead compounds. Although the principles
involved—the computational analysis of chemical
databases to identify compounds appropriate for
a given biological receptor—have been pursued
for several years in molecular modeling groups,
the availability of inexpensive high-performance
computing platforms has transformed the
process so that increasingly complex and more
accurate analyses can be performed on very
large data sets. The virtual screening technology
of Protherics Molecular Design Ltd. is based on
its integrated software environment for receptor-
based drug design, called Prometheus. In
particular, molecular docking is used to predict
the binding modes and binding affinities of every
compound in the data set to a given biological
receptor. This method represents a very detailed
and relevant basis for prioritizing compounds for
biological screening. This paper discusses the
broader scope of virtual screening and, as an
example, describes our recent work in docking
one million compounds into the estrogen
hormone receptor in order to highlight the
technical feasibility of performing very large-
scale virtual screening as a route to identifying
novel drug leads.

Drug discovery has traditionally made progress
by a combination of random screening and ra-

tional design.1 In practice, the latter approach is of-
ten frustrated by a paucity of experimental data that
define the structure and properties of the biological
target. Today, this situation is starting to change, with
initiatives such as the Human Genome Project prom-
ising access to a vast amount of data detailing the
molecular basis of disease.2 In parallel we have wit-

nessed the impact of automated laboratory systems
in the fields of chemical synthesis, biological assay,
drug metabolism, and even protein crystallography,
such that high-throughput strategies have come to
dominate many areas of drug discovery research.3

Despite these advances (and indeed partly because
of them), drug discovery remains a difficult task, but
at least we are now gathering together all the pieces
of the puzzle, in terms of information, technologies,
and expertise.

This paper describes a computational strategy that
is beginning to influence traditional routes to drug
discovery. Virtual screening4 is the use of high-per-
formance computing to analyze large databases of
chemical compounds in order to identify possible
drug candidates, and is a technology that comple-
ments current advances in high-throughput chem-
ical synthesis and biological assay. This paper sur-
veys methods and applications of virtual screening
and describes its potential for supporting the drug
discovery process. In particular, we examine the value
of molecular docking as a computational approach
to achieve fast and accurate filtering of large data
sets and describe as an example a virtual screen
against the estrogen receptor (the DockCrunch
project).5
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High-throughput screening in drug discovery

For those engaged in drug design, such as medicinal
and computational chemists, the research phase can
be broken down into two main tasks: identification
of new compounds showing some activity against a
target biological receptor, and the progressive op-
timization of these leads to yield a compound with
improved potency and physicochemical properties
in vitro, and, eventually, improved efficacy, pharma-
cokinetics, and toxicological profiles in vivo.

Identification of leads is driven either by random
screening or a directed design approach, and tradi-
tionally both strategies have been of equal impor-
tance, depending on the problem in hand. The di-
rected approach needs a rational starting point for
medicinal chemists and molecular modelers to ex-
ploit. Examples include the design of analogs of a
drug known to be active against a target receptor and
mimics of the natural substrate of an enzyme. In-
creasingly, the three-dimensional structure of many
biological targets is being revealed by X-ray crystal-
lography and nuclear magnetic resonance (NMR)
spectroscopy, opening the way to the design of novel
molecules that directly exploit the structural char-
acteristics of the receptor binding site. In recent
years, this approach of structure-based design has had
a major impact on the rational design and optimi-
zation of new lead compounds in those cases where
the receptor structure is well-characterized.6–8

An alternative approach (and one that is essential
when no useful starting information is available) is
random screening of compound collections. The
compounds may be sourced from the in-house da-
tabase of a pharmaceutical company, or a collection
of natural products, or the catalog of a chemical sup-
plier. In the past, this approach represented a mod-
erately fruitful if somewhat long-winded strategy—if
you are searching for compounds at random, you may
have to assay a very large number of compounds be-
fore you find an interesting hit. However, over re-
cent years this strategy has played an increasingly
important role because of improvements in high-
throughput screening (HTS) technology, and for
many pharmaceutical companies, HTS is now an es-
sential component to identify leads.3 Automated
compound handling and assaying facilities now per-
form tasks such as retrieval of compounds from stor-
age, dilution and plating out of samples, and the run-
ning of assays of ever-increasing complexity. Such
automated systems can handle tens of thousands of
compounds per day. At this scale, random screen-

ing has the potential to identify useful numbers of
hits on a timely basis.

However, HTS is no guarantee of success, and the
problems associated with over-reliance on random
HTS are becoming apparent.9 Establishing a robust
assay for a new target takes time and money. Hit rates
against some receptors are reported to be very low,
necessitating screening of very large numbers of com-
pounds (tens to hundreds of thousands). Collections
of synthesized compounds or natural products of-
ten contain far less chemical diversity than is desired,
are not bottomless resources, and are very time-con-
suming to replenish. Techniques such as combina-
torial chemistry offer the potential for synthesizing
very large libraries of compounds, but in practice this
approach is time-consuming for drug-like com-
pounds and may still produce libraries of relatively
restricted diversity.

To make matters worse, recent advances in genom-
ics will vastly increase the number of potential ther-
apeutic targets available for research. Although this
increase will undoubtedly yield benefits in the long
term for the discovery of novel therapeutics, in the
short term it poses the problem of how to validate
this array of biological targets and how to identify
useful lead compounds in an efficient and timely
manner.10

Given these caveats, it is worth evaluating the role
of technologies that may complement high-through-
put assay and high-throughput synthesis. The term
virtual screening has been used to describe a process
of computationally analyzing large compound col-
lections in order to prioritize compounds for synthe-
sis or assay.4 A broad range of computational tech-
niques can be applied to the problem. In our work
we have focused on explicit receptor–ligand molec-
ular docking as a means of yielding the most detailed
model of the way in which a given ligand will bind
to a receptor, and hence the most informative basis
on which to assess which ligands are useful candi-
dates for synthesis or assay.

Although the underlying methods of virtual screen-
ing have been in use in various guises for several
years, it is worth noting the recent impact on mo-
lecular modeling made by the increased availability
of high-performance computing platforms. Afford-
able multiprocessor workstations and PC (personal
computer) clusters have enabled the modeler to em-
ploy computationally demanding algorithms on a
routine basis. This change is particularly relevant in
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the case of virtual screening, where, as in the work
described in this paper, computationally intensive
methods such as molecular docking must be applied
to very large databases of chemical structures. In-
deed, we are now witnessing the expansion and rou-
tine application of high-throughput modeling tech-
niques in a way that parallels the rapid progress made
over the last decade in high-throughput chemical syn-
thesis and pharmacological screening.

Virtual screening—concepts and feasibility

Virtual screening is a strategy for bringing a more
focused approach to HTS by using computational
analysis to select a subset of compounds considered
to be appropriate for a given receptor. Clearly, this
strategy implies that some information is available
regarding either the nature of the receptor binding
site or the type of ligand that is expected to bind pro-
ductively, or both. It should be stressed that virtual
screening encompasses a variety of computational
screens, from the simplistic to the sophisticated, and,
hence, can usefully exploit different types of infor-
mation describing the receptor. Likewise it can be
used to produce either a very focused subset of com-
pounds (for example, if only close structural analogs
of a lead compound are of interest) or a very open-
ended subset (for example, a restriction on size, as
described by molecular weight, may be the only con-
straint applied). Such issues relate to the objectives
of a particular research project. For example, an HTS
program may be already up and running, and the
problem to be addressed is which set of 100 000 com-
pounds from a database of one million should be as-
sayed first. At the other end of the scale, a newly
discovered receptor may have a low-throughput
binding assay, and a far more focused set of com-
pounds needs to be selected.

In theory, the applicability of virtual screening is lim-
ited only by what properties of a compound can be
calculated computationally and the perceived rele-
vance of those properties to the problem in hand.
On a practical level, further considerations include:

● The timescale for calculation of the properties,
which may be considerable for a database of, say,
one million compounds

● The accuracy or meaningfulness of the properties,
particularly so when computationally cheap meth-
ods are applied

● Methods for analysis of the data—not a trivial
problem, since high-throughput modeling, as with
HTS, generates very large volumes of data

● The software and hardware required to yield a
timely answer

The main computational filters that are available to
virtual screening (in terms of increasing sophistica-
tion and computational cost) can be summarized as:

● Selection on the basis of two-dimensional (2-D)
property profiles

● Selection by means of a target-specific pharma-
cophore

● Selection on the basis of more detailed three-di-
mensional (3-D) modeling: e.g., receptor–ligand
docking

These methods are now described.

Selection on the basis of 2-D property profiles.
Regardless of whether any useful information is
available to describe the receptor or known ligands,
it is often preferable to limit HTS to “drug-like” com-
pounds. “Drug likeness” is used to indicate a broad
range of properties or structural features that are
generally important in various stages of drug opti-
mization, such as stability, solubility, and lipophilic-
ity, which can all influence drug absorption and
excretion. Selection of drug-like compounds is par-
ticularly important when compounds are sourced
from suppliers’ catalogs (where many compounds are
more reagent-like than drug-like) or from a combi-
natorial library. The current trend in the pharma-
ceutical industry is for pharmacokinetic profiles and
toxicological profiles to be evaluated at earlier stages
in the drug discovery process. Therefore, it is useful
to bring some of these concepts into the virtual
screening stage, while accepting that the calculable
properties currently available are at best only vague
indicators of metabolic fate or toxicity.

Lipinski’s “rule-of-five” is a well-known rule-of-
thumb that encodes a simple profile for orally bio-
available compounds, basing the classification on a
limit on molecular weight, lipophilicity (in terms of
the partition coefficient, log P), and hydrophilicity
(in terms of counts of hydrogen bond donors and
acceptors).11 These properties can be calculated
quickly and can be easily applied to filtering a large
database. Likewise, filters can be applied on specific
chemical substructures, e.g., those associated with
problems in chemical stability or toxicity. Examples
of this type of filtering process are the REOS (rapid
elimination of swill) procedure described by scien-
tists from Vertex Pharmaceuticals as a way of screen-
ing out undesirable properties at the start of the pro-
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cedure to reduce the number of compounds to be
submitted to more intensive computational evalu-
ation.4 Other approaches to define drug likeness ex-
ploit techniques such as neural networks and genetic
algorithms to analyze property profiles in order to
construct a scoring or classification scheme that is
capable of differentiating known drugs from non-
drugs.12

In a further stage of this approach, there are exam-
ples where it is possible to define 2-D property pro-
files that are believed to bias the selection toward
a particular receptor. For example, analysis of known
estrogen receptor agonists may bias the selection
toward a specific molecular weight range and a li-
pophilicity somewhat higher than most drug-like
compounds. Such property profiles help to reduce
the size of the screening set (sometimes drastically),
although smaller size is achieved at the risk of re-
duced novelty. This approach is useful if the limi-
tations are borne in mind and is particularly appro-
priate for dividing and prioritizing a very large
database into subsets that fulfill different design cri-
teria.

Selection by means of a target-specific pharmaco-
phore. A pharmacophore is a simplified 3-D descrip-
tion of the key structural features of a set of known
ligands or of the target receptor. The structural fea-
tures are usually described in terms of discrete hy-
drogen bond donors or acceptors, lipophilic centers,
ring centroids, and so on, separated in terms of dis-
tances (more usually, distance ranges). Usually a
small number of such sites is defined, e.g., two to
five. Typically these sites are derived from a set of
ligands and, hence, represent those features, com-
mon to the ligands, that are deemed to be relevant
to activity. For example, classical thrombin inhibi-
tors are characterized by a cationic center (binding
to the S1 specificity pocket) 9–11 Å (angstroms) away
from a lipophilic center (binding to either the S2 or
S4 lipophilic pockets). A pharmacophore is readily
used to search a database of chemical structures.
These structures need to contain 3-D models, and
preferably a conformationally flexible search is nec-
essary so that compounds are not rejected on the
trivial basis that an inappropriate conformer is stored
in the database.

The value of the pharmacophore search is that a rea-
sonably focused query on 3-D structural grounds can
be applied relatively quickly to a large database. The
limitations are that the query may rapidly become
over-defined. It is often the case that a typical three-

or four-point pharmacophore will be too restrictive
and yield few interesting hits, whereas a slightly more
open-ended query may yield too many hits. Either
way, the problem with managing the hit list is that
there is usually no effective way of ranking or scor-
ing the hits, other than methods based on evalua-
tion of similarity to the initial ligands. Therefore,
there is a tendency for pharmacophore searches to
yield solutions similar to those already known, rather
than a well-focused set of novel solutions.

Selection by means of receptor–ligand docking. The
next stage up from a pharmacophore search in terms
of computational expense is explicit docking of the
compound database to the biological target of in-
terest. This stage involves objective docking of each
compound (either as a rigid or conformationally flex-
ible model) into a model of the receptor that is
treated either as rigid or with limited side-chain flex-
ibility. Generally the extents of the expected bind-
ing site are defined to limit the search. This virtual
screening strategy requires a 3-D database of ligands,
a 3-D structure of the target receptor (either derived
experimentally or from a model built by homology
to related protein structures), and a docking code
comprising an efficient searching algorithm and an
accurate scoring function. These features will be de-
scribed in more detail in a subsequent section.

The attraction of explicit receptor–ligand docking
is that it represents the most detailed and relevant
computational model for identifying a receptor-fo-
cused subset. In addition, it is also one of the least-
biased approaches. Application of pharmacophore
queries or focused 2-D property profiles may signif-
icantly inhibit the diversity of the compound subset
because they are biased by the properties of known
ligands. In contrast, the molecular docking program
can process an entire chemical database with min-
imal prefiltering (e.g., to eliminate unstable or toxic
moieties) so that the final selection is based on the
quality of the docked models rather than a subjec-
tive opinion of what properties are expected in a li-
gand. This route is a very promising one to finding
structurally novel ligands, which may make recep-
tor interactions similar to known ligands or may
achieve different interactions within other binding
sites.

The output of a docking-based screen is a set of 3-D
models of the predicted binding mode of each com-
pound against the receptor, together with a ranking
that is a measure of the quality of fit, if not a pre-
diction of the binding affinity itself. The 3-D models
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represent the most detailed basis available for de-
termining which molecules are capable of fitting
within the very strict structural constraints of the re-
ceptor binding site—such a degree of discrimination
is not possible using a pharmacophore model, be-
cause available searching software cannot handle
queries with the number of points needed to ade-
quately represent the complexities of the binding site.

Besides serving as structural filters, the 3-D models
are an important basis for scoring the hits, such that
a quantitative ranking is achievable using various
scoring methods.13 These methods are typically em-
pirically derived functions for estimation of free en-
ergy of binding, usually calibrated against a data set
of heterogeneous receptor–ligand complexes, as de-
termined by X-ray crystallography. For a particular
receptor, ligand binding modes may be further clas-
sified with respect to the specific receptor contacts
that are achieved. Thus, the 3-D models represent a
very valuable source of data for understanding the
nature of ligand binding in a given receptor and,
hence, as a source of inspiration for the design of
analogs or indeed novel ligands.

The potential problems associated with molecular
docking as a virtual screening strategy are the qual-
ity of the docking results and the technical feasibil-
ity of processing large databases. For example, there
is an issue about the accuracy of the predicted bind-
ing modes and energies, particularly when using fast
docking protocols to process large data sets: are the
methods capable of identifying true hits and reject-
ing inactive compounds? Although any high-
throughput technology must sacrifice some degree
of accuracy, there is now enough experience with var-
ious docking packages to give confidence that they
are accurate enough to achieve a meaningful focus-
ing of the database. It should be remembered that
the goal of docking is not to pick out conclusively
the handful of expected hits, but rather to pick a sub-
set of compounds (perhaps 1 to 10 percent of the
database) that will contain significantly more hits
than a randomly chosen set.13

More of a concern is the computational expense to
dock and analyze a large database. For virtual screen-
ing to be a useful sister technology to HTS, it should
be capable of processing data sets of at least the or-
der of a million compounds. (This amount represents
roughly the number of commercially available drug-
like molecules or the historic collection of a phar-
maceutical company and is a large underestimate of
the numbers potentially available via combinatorial
synthetic routes.) Molecular docking is the most com-
putationally expensive of all the virtual screening
methods discussed in this paper. However, advances
in the efficiency of algorithms and hardware have now
reduced the computational cost typically to the or-
der of one minute of CPU time per ligand per pro-
cessor. Some docking programs are appreciably
faster, mainly those that treat ligands as conforma-
tionally rigid, but they run the risk of missing hits
because of an inadequate representation of confor-
mational space. Even accepting the computational
cost of flexible ligand docking, analysis of very large
databases on reasonably priced supercomputers (or,
increasingly, on clusters of PCs) is now a technically
feasible task. Over the last year, a number of work-
ers have published virtual screening studies using a
variety of docking programs (Table 114–22), demon-
strating the level of interest in this approach and its
broad applicability.

To perform virtual screening on a large scale pre-
sents a number of technical challenges. Not only are
there the more obvious questions of how quickly and
how accurately a large database can be evaluated,
but there is also the need to automate the proce-
dure, including preprocessing of the chemical data-
base and postprocessing of the results. For virtual
screening to become a technology of day-to-day ap-
plicability and ease-of-use, it is essential that mod-
elers are provided with the tools to support and fa-
cilitate each stage. To demonstrate this point, we
recently completed the DockCrunch project5 (in col-
laboration with Silicon Graphics Inc. [SGI]) as a
worked example of virtual screening in an industrial
setting, and the results of this exercise will form the
basis for a more detailed examination of the virtual
screening process in the following section.

DockCrunch—a feasibility study on large-
scale virtual screening

The DockCrunch project involved the virtual screen-
ing of a large database of commercially available
compounds against the estrogen receptor. The main
objective of the study was to demonstrate the tech-

To perform virtual screening
on a large scale presents a

number of technical
challenges.
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nical feasibility of performing a virtual screening ex-
ercise on such a large scale, using a computationally
intensive approach (receptor–ligand docking) to an-
alyze a database of over one million compounds. The
project served as a test case to address the many tech-
nical issues that arise when implementing a high-
throughput virtual screening program, such as the
development of tools for automated preprocessing
and filtering of chemical databases, parallelization
of the docking simulation on a multiprocessor ma-
chine, and visualization tools for analysis of the large
body of results. The various modeling tasks are ex-
ecuted within a proprietary software environment
(Prometheus). In this way the majority of the tasks
can be performed within an integrated platform
rather than by accessing a number of disparate soft-
ware packages, which is an important practical con-
sideration for a molecular modeling team. (Commer-
cial software is used for specialized tasks such as
structural refinement of the receptor and 2-D-to-3-D
conversion of the compound database.) An overview
of the process is depicted in Figure 1.

Completing the project in an appropriate timescale
was an important objective in order to demonstrate
that such a computationally intensive strategy is a

relevant adjunct to a modern HTS program. How-
ever, equally important was to validate the accuracy
of the method by demonstrating that the docking and
scoring strategy was able to retrieve known ligands
seeded in the random data set, and that novel high-
scoring compounds identified by the docking were
in fact potent ligands.

Data set definition and preparation. We chose the
estrogen receptor as an example of a well-understood
target of therapeutic relevance for which crystallo-
graphic structural data were publicly available. The
estrogen receptor is an example of the family of nu-
clear hormone receptors. 23 The binding of an agonist
(i.e., a ligand capable of activating the receptor) in-
duces a particular fold in the vicinity of the binding
site that promotes association with other recogni-
tion proteins; the receptor–ligand complex is then
transported into the cell nucleus, binds to a specific
sequence of DNA (deoxyribonucleic acid) and thereby
modulates gene expression. Other ligands that bind
to the receptor elicit no such response and are classed
as antagonists. From X-ray crystallography it is ob-
served that the 3-D fold of the receptor is somewhat
different upon binding an antagonist. The critical he-
lix that moves to bind snugly around a small agonist

Table 1 Summary of recently published virtual screening studies based on receptor–ligand docking

Target Software Package Ligand Data Set Reference

Thymidylate synthase DOCK 153 000 ACD compounds 14

FK506-binding protein SANDOCK ACD and Cambridge
Crystallographic Database

15

Retinoic acid receptor ICM 153 000 ACD compounds 16

HIV-1 RNA
transactivation response
element

ICM 153 000 ACD compounds 17

Farnesyl transferase EUDOC 67 928 ACD compounds 18

DNA gyrase LUDI, CATALYST 350 000 ACD 1 in-house compounds 19

Kinesin DOCK 110 000 ACD compounds 20

Hypoxanthine-guanine-
xanthine phosphoribosyl
transferase

DOCK 599 compound virtual library 21

Thrombin; factor Xa;
estrogen receptor

PRO_LEADS 10 000 ChemBridge compounds 22

Estrogen receptor (agonist
and antagonist forms)

PRO_LEADS 1.1 million ACD-SC compounds 5

IBM SYSTEMS JOURNAL, VOL 40, NO 2, 2001 WASZKOWYCZ ET AL. 365



ligand is forced away by the characteristic large side-
arm structure that distinguishes antagonist com-
pounds (such as tamoxifen or raloxifene) from ago-
nists (e.g., estradiol) (Figures 2 and 3).24

Given that the agonist and antagonist forms of the
receptor exhibit some key structural differences, the
DockCrunch project involved evaluation of the com-
pound database against both forms of the receptor
in order to explore whether the virtual screening
strategy was capable of distinguishing potential an-
tagonists from agonists. (Note that the terms ago-
nist and antagonist as used here reflect the gross
structural differences between the ligands. In a phar-
macological sense, agonism and antagonism are
more accurately functionally defined with reference
to effects observed within a given animal or tissue
model. Antagonist is used here to describe ligands
that may actually exhibit partial agonist activity and
are more correctly referred to as selective receptor
modulators in the pharmacological literature.25) The
crystallographic structures used were those of the hu-
man alpha-estrogen receptor complexed with estra-
diol (Brookhaven code 1ERE) and with raloxifene

Figure 1 Summary of virtual screening protocol as
implemented in Prometheus

COUNTERION STRIPPING,
IONIZATION, ERROR
TRAPPING, ETC.

PHYS-CHEM PROPERTIES,
REACTIVE SUBSTRUCTURES

PRO_LEADS DOCKING, DISTRIBUTED
OVER MULTIPLE PROCESSORS

GRAPHICAL BROWSING,
ADDITIONAL DESCRIPTORS

CONSTRAINED MINIMIZATION,
GRID CALCULATION

DATABASE PREPARATION

DATABASE PREFILTERS RECEPTOR PREPARATION

RECEPTOR–LIGAND DOCKING

ANALYSIS

Figure 2 Examples of structures of estrogenic compounds
within the reference set: estradiol and
diethylstilbestrol (agonists), raloxifene and
tamoxifen (antagonists)
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(code 1ERR).24 The crystallographic structures re-
quired minimal refinement before docking: i.e., the
addition of hydrogen atoms and a constrained ge-
ometry refinement of the residues forming the main
binding pocket, i.e., residues within 15 Å of the ligand
(using InsightII software of Molecular Simulations
Inc. [MSI]).26

For the compound data set we chose the Avail-
able Chemicals Directory-Screening Compounds
(ACD-SC) from Molecular Design Ltd. (MDL).27 This
represents over 1.5 million commercially available
compounds collected from the major chemical sup-
pliers and, as such, is a suitable starting point for a
virtual screening project. Prior to docking, the data
set was processed as follows5 (unless otherwise
stated, all the database processing tasks were per-
formed with our in-house software Prometheus):

● Database preprocessing:
– Correction or standardization of the 2-D struc-

tural representations
– Removal of counter-ions
– Protonation of acids or bases as predicted at

physiological pH
– Calculation of physicochemical properties (e.g.,

molecular weight, log P, hydrogen bond counts,
flexibility, counts of chiral centers, etc.)

● 2-D property filters:
– Removal of inorganic compounds
– Removal of compounds displaying nondrug-like

physicochemical properties, e.g., molecular
weight ,200 or .600, calculated log P . 7,
number of hydrogen bond donors .8 or accep-
tors .8

● Conversion into 3-D using the MSI Converter:
– One conformer per molecule, plus additional en-

antiomers for undefined chiral centers

The end result of this task was to yield a data set of
3-D structures for 1.1 million drug-like compounds.
The definition of a drug-like set was generous so as
not to limit novelty by imposing too restrictive a phys-
icochemical profile. Hence, the physicochemical pro-
files were used to reject compounds lying at the ex-
tremes of property ranges. In the end, only around
15 percent of the database was excluded on the ba-
sis of 2-D properties.5

A small number of known ligands was added to the
database in order to test whether the docking pro-
cess could reliably retrieve known hits from the large
number of random compounds. The set of 20 ago-
nists included analogs of estradiol, diethylstilbestrol,

and various environmental estrogenic compounds,
and the 20 antagonists comprised analogs of ralox-
ifene, tamoxifen, and other literature compounds.25

Docking and scoring. Docking was performed us-
ing our in-house package PRO_LEADS, which has
been developed to objectively dock flexible ligands
into a rigid receptor model.28 The main features of
a docking package are an efficient searching algo-
rithm to explore a very large number of potential
docking conformations and orientations per ligand,
and a scoring function that can accurately identify
the correct binding mode and yield a reliable esti-
mate of the binding affinity. PRO_LEADS uses a tabu
searching strategy that in effect performs a random
search in the conformational or orientational space
of the ligand but maintains a tabu list of visited so-
lutions to drive the search toward novel regions of
space. Typically 105 to 106 moves are required within
the tabu search to find the global minimum on what
is an extremely complicated energy landscape. This
procedure is usually repeated several times from a

Figure 3 Comparison of the 3-D receptor-bound
conformations of estradiol and raloxifene as
derived from the coaligned X-ray structures
1ERE and 1ERR

KEY: ESTRADIOL GREEN CARBON ATOMS
RALOXIFENE ORANGE
ERE RECEPTOR WHITE
ERR RECEPTOR CYAN
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random starting position of the ligand, so that in the
current example, five attempts were made per ligand,
each resulting in a saved solution. The best scoring
solution was then selected from the five attempts.

The energy function, ChemScore, is an empirical
scoring function that gives a direct prediction of free
energy of binding.29 The scoring is based on an eval-
uation of the strength of the ligand–receptor inter-
action in terms of the geometry of hydrogen bond
contacts, lipophilic contacts, and metal binding con-

tacts, together with an entropic penalty to describe
the freezing of ligand conformational flexibility upon
binding. This scoring function is rapidly evaluated
using precalculated receptor-specific grids to serve
as look-up tables of component atomic binding en-
ergies or to point to lists of neighboring receptor at-
oms. The scoring function has been calibrated against
a large data set of heterogeneous crystallographic
ligand–receptor complexes. The accuracy of predic-
tion is ;8.7 kJ/mol (kiloJoules per mole) (i.e., the
cross-validated standard error for an 82-complex set),
equating to around one to two orders of magnitude
in binding affinity.29 For use as a fitness function for
docking, the original ChemScore function is mod-
ified to introduce longer-range hydrogen bonding
terms and to include terms to describe ligand–recep-
tor clash and ligand strain energy.28 In a validation
study, the lowest energy binding mode predicted by
PRO_LEADS was within 2 Å root-mean-square (RMS)
deviation of the crystallographically determined
binding mode for 79 percent of ligands in a 70-com-
plex test set.22

In this example, grid boxes were built within
Prometheus to cover the complete binding site as
occupied by estradiol in 1ERE or raloxifene in 1ERR.
As the binding site is quite enclosed in the estrogen
receptor, a grid box extending 4 Å around the bound
ligand in the crystal structure encompasses all the
accessible binding pockets.

Results of DockCrunch

In this section, we discuss results obtained in the
DockCrunch project.

Energy profiles and prediction of selectivity. The pre-
dicted binding modes for the reference ligands were
in agreement with the available crystal data. For ex-
ample, estradiol and raloxifene were predicted to
within 1 Å heavy atom RMS deviation of the crys-
tallographic solutions. For the other reference li-
gands the true binding modes are unknown, but it
is assumed that they will bind in a broadly similar
manner. In each case, PRO_LEADS yielded a plau-
sible solution.

Figures4and5summarizethedistributionofDocked-
Energy for the million compound set docking to the
two forms of the estrogen receptor. (DockedEnergy
is a prediction of the free energy of binding, and,
therefore, a more negative energy represents a more
favorable binding interaction.) For comparison, the
graphs also show the energy distribution for the sets

Figure 4 Frequency distribution of DockedEnergy for
docking the one million random compound set
(ACD-SC) and reference set (agonists) against
the agonist conformation of the estrogen receptor
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Figure 5 Frequency distribution of DockedEnergy for
docking the one million random compound
set (ACD-SC) and reference set (antagonists)
against the antagonist conformation of the
estrogen receptor
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of known agonists and antagonists. The energies of
the one million random compounds binding to the
agonist receptor are very broadly distributed (Fig-
ure 4), with a median of 223 kJ/mol and with only
the top 1 percent of the random compounds scoring
below 240 kJ/mol. The broad tail at high (positive)
energies reflects a number of compounds docking
very poorly, i.e., large compounds that are not well
accommodated within the enclosed binding pocket
and therefore incur a large clash penalty. (Note that
this clash function is softer than the typical van der
Waals energy used in molecular mechanics.) In con-
trast, the set of 20 known agonists is markedly clus-
tered around energies of 233 to 246 kJ/mol; the
poorer scores are associated with nonsteroidal li-
gands, whereas estradiol analogs are more tightly
clustered at 241 to 246 kJ/mol. Around 10 percent
of the random compounds score better than
233 kJ/mol (i.e., the maximum score for a known
agonist), whereas only 1 percent score better than
240 kJ/mol. Therefore, there is a good separation
between known ligands and random compounds on
the basis of predicted binding affinity.

A similar result is seen for compounds docking to
the antagonist receptor (Figure 5). The random com-
pounds are again broadly distributed, now with a
somewhat greater median value of 230 kJ/mol. The
known antagonists, scoring from 244 to 262 kJ/mol,
are very well separated from the random compounds,
with only around 1 percent of the random set scor-
ing at a similar level. It is perhaps not surprising that
better discrimination is seen for the antagonist re-
ceptor, since the known ligands are relatively large
compounds, and it is unlikely that the random data
set will contain many hits possessing all the struc-
tural features required for good binding. In contrast,
the agonists are smaller and comparatively simple
compounds, and it is more likely that the random
data set will contain small lipophilic compounds ca-
pable of mimicking a steroid skeleton.

It was noted above that the random compounds ap-
peared to show more negative binding energy to the
antagonist receptor compared with the agonist re-
ceptor. This difference is highlighted as a scatter plot
in Figure 6. This plot demonstrates the degree of
selectivity shown by the random data set between
the two forms of the receptor. It can be seen that
a large number of points lie along the main diag-
onal—they represent compounds binding with ap-
proximately similar energies to the two forms of the
receptor. In addition, there is a significant cloud of
points lying below the diagonal, i.e., compounds dem-

onstrating greater binding energies to the antago-
nist receptor compared with the agonist receptor.
These compounds are typically large ligands that
bind well to the additional binding pocket in the
antagonist receptor but bind poorly (because of
clashing) to the agonist receptor. These trends are
highlighted by the reference ligands. The known an-
tagonists lie well below the diagonal, whereas the
known agonists lie on the diagonal.

It may have been expected that the agonists would
show a preference in energy for the agonist recep-
tor. However, the nature and number of the contacts
that these small ligands make to the two receptors
are very similar, and the scoring function is not sen-
sitive enough to differentiate between them. This
does not imply that these compounds would actu-
ally act as antagonists, since the antagonist form of
the receptor is presumably only stabilized by virtue
of binding to an appropriate ligand.

Thus, the DockedEnergy is not only able to sepa-
rate known ligands from random compounds for a
particular receptor but is also able to give an indi-
cation of receptor selectivity. This feature is impor-
tant in drug design, where toxicity of a drug may be
related to promiscuous binding across a number of
structurally related receptors.

Supplementary descriptors: Measures of surface
complementarity. One important benefit of perform-
ing virtual screening by means of receptor–ligand
docking is that a large body of data is generated for
assessing the quality of the models. Although the
above analyses have focused on the total DockedEn-
ergy, there are also component energy terms (e.g.,
hydrogen bonding and lipophilic terms), as well as
a wide range of structural descriptors that may be
calculated from the 3-D models of the receptor–li-
gand complexes. These additional descriptors have
been found to improve the discrimination between
known ligands and random ligands (reflecting the
fact that most scoring functions tend toward over-
prediction of random compounds—an unavoidable
consequence of calibrating the functions against
training sets of tight-binding ligands). In the present
example, these supplementary descriptors included
a measure of shape complementarity (StericPen-
alty30), and also the degree of mismatch between po-
lar and lipophilic surface areas on ligand and recep-
tor, which are features not adequately described in
the ChemScore energy function.
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For most of these structural descriptors, it is nec-
essary to define preferred ranges by analysis of the
docking modes of known ligands because we have
found that different combinations of descriptors may
be effective for different types of receptor. For ex-
ample, given the nature of the estrogen receptor (i.e.,
an enclosed lipophilic pocket), it may be expected
that useful descriptors would include measures of
clashing with the receptor and the presence of in-
appropriate polar functionality in the ligand. Al-
though this implies that the analysis is to some ex-
tent tailored to the specific example, this condition
should not be seen as a limitation of the method.
The analysis protocol is very similar across all recep-
tor types, but some of the finer details of the anal-
ysis are varied to exploit specific properties or knowl-

edge of the structure-activity relationship (SAR) of
a particular receptor.

The StericPenalty and PolarLipophilicMismatch
terms are plotted in Figure 7 for the known agonists
and the higher-scoring random ligands (i.e., Docked-
Energy ,230 kJ/mol and HbondEnergy ,23
kJ/mol). The plot shows that the known agonists clus-
ter more compactly than the random set in this par-
ticular property space, and hence, these supplemen-
tary properties are useful in differentiating between
good ligands and random compounds. Ideally, these
supplementary descriptors would be incorporated
into the ChemScore predicted binding energy. The
problem is in assigning an energy value to these de-
scriptors that is compatible with ChemScore, par-

Figure 6 Scatter plot of DockedEnergy for the agonist estrogen receptor (ER) versus the antagonist ER, for the set of random
compounds (ACD-SC) and reference agonists and antagonists
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ticularly as the random data set typically displays val-
ues that can be well outside the limits seen for the
ChemScore training set.

Subset selection: Enrichment of subsets with known
ligands. The objective of performing virtual screen-
ing is to select subsets of compounds for assay that
are more likely to contain active hits than a sample
chosen at random. For the validation of the Dock-
Crunch exercise, we have included sets of 20 known
agonists and 20 known antagonists to act as our ref-
erence hits. The enrichment rate is the increase in
the proportion of hits found in any given sample of
compounds, compared with the proportion expected
from a random sample. (For example, the hit rate
for a randomly chosen sample is 20 known hits out

of 1.1 3 106 random compounds, or 0.002 percent.)
In terms of the practical value of selecting com-
pounds for high-throughput screening, achieving a
good enrichment rate of active compounds in the
chosen subset is more important than predicting the
binding affinity of individual compounds to high ac-
curacy.

Table 2 presents examples of enrichment rates that
can be obtained by making a focused selection on
the basis of DockedEnergy or other properties. Note
that in practice the enrichment rates will vary accord-
ing to the nature of the receptor and the ligands and
to the selection criteria applied, so the data are pre-
sented as a representative example.
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Figure 7 Scatter plot of StericPenalty vs PolarLipoMismatchArea for the sets of high-scoring random compounds
(DockedEnergy < –30 kJ/mol, HbondEnergy < –3 kJ/mol) and known agonists, docked against the agonist receptor
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When the selection is made on the basis of Docked-
Energy alone, it is seen that by applying more strin-
gent energy criteria (e.g., 230, 235, and 240
kJ/mol), smaller subsets of the database are defined
(approximately 20 percent, 5 percent, and 1 percent
of the total). In each case the majority of known li-
gands are recovered, although some of the reference
ligands are lost when using the most stringent cut-
off. However, it is the case that using DockedEnergy
as the single exclusion criterion yields an effective
increase in the enrichment rate, so that when the top-
scoring 1 percent of the data set is chosen, the pro-
portion of known ligands in the sample is 76-fold that
of a random sample. However, Table 2 also dem-
onstrates the value of using other properties to yield
a more focused selection. Thus by supplementing a
more generous energy cutoff with other energy terms
and descriptors of receptor–ligand complementar-

ity, a small subset is again derived (;1 percent of
the total) without the loss of the poorer-scoring ref-
erence ligands. A similar result was obtained for the
antagonist receptor.

Identification of novel estrogenic compounds. As a
further validation of the DockCrunch project, a num-
ber of compounds were selected from the high-scor-
ing random compounds and assayed for binding af-
finity against the human alpha estrogen receptor.
Following the general selection protocols outlined
above, a number of preferred compounds were se-
lected for each receptor using criteria such as total
and component docked energies, receptor comple-
mentarity, 2-D physicochemical properties, similar-
ity of binding mode to known ligands, and dissim-
ilarity of 2-D structure to known ligands. An example
of the selection process for the agonist receptor is
given in Table 3.

Where a high-throughput assay is available, it would
generally be more productive to search for novel hits
by assaying a large number of compounds—say, in
the thousands—rather than use all the above selec-
tion criteria to produce too small and narrow a sub-
set. However, in the present example, compounds
were to be assayed in an external low-throughput as-
say, and therefore, a small focused subset was se-
lected. As shown in Table 3, the application of en-
ergy components and receptor complementarity
descriptors reduced the data set to about 2500 com-
pounds as potential agonists. At this stage, further
refinement was achieved by applying a more restric-
tive set of 2-D physicochemical properties in order
to select small lipophilic but nonsteroidal com-
pounds. 3-D similarity descriptors were used to se-
lect compounds binding in a mode approximately
similar to known ligands. This left around 300 com-
pounds for the agonist receptor. At this stage, the

Table 3 An example of the filtering protocol applied to the
selection of potential estrogen receptor agonists
from docking 1.1 million ACD-SC compounds

Selection Criteria Subset Size

None 1 152 379
DockedEnergy 73 961
Energy components 12 265
Receptor–ligand

complementarity
2 571

2-D property profiles 1 520
3-D similarity profiles 293

DockedEnergy was defined as ,230 kJ/mol. Energy components included limits on
hydrogen bonding (212 to 25 kJ/mol), lipophilic (240 to 220 kJ/mol) and clash
energy (,210 kJ/mol) terms. Receptor–ligand complementarity included the
StericPenalty (22 to 11) and PolarLipophilic Mismatch Area (,25 Å2)
properties described in the text. 2-D property profiles comprised a more focused
limit on molecular weight (350 to 450), log P (1 to 6), and counts on rings (#3),
chiral centers (#3) and polar atoms (#5 acceptors, #3 donors), while excluding
high structural similarity on the basis of 2-D substructures (Tanimoto coefficient
,0.9 based on 2-D MACCS keys). 3-D similarity profiles were measures of
similarity in binding mode versus models of known ligands docked in the receptor;
these were calculated on the basis of volume overlap with a docked reference
ligand, and also by a bit-string comparison of the receptor atoms forming
favorable hydrophobic or hydrogen-bonding contacts with the ligand.

Table 2 Examples of enrichment rates for selection of high-scoring ligands to the estrogen agonist receptor (enrichment rate
is the relative increase in the proportion of reference ligands recovered in a given sample compared to a random
sample)

Subset Selection
Criteria

Percent of Total
Database
Selected

Number of
Reference

Ligands
Recovered

Enrichment
Rate

None 100.0 20 1
DockedEnergy ,230 kJ/mol 19.0 20 5.2
DockedEnergy ,240 kJ/mol 1.0 15 76
DockedEnergy ,230 kJ/mol 1 additional

complementarity descriptors*
0.9 20 108

*The additional complementarity descriptors were: HydrogenBondEnergy ,23 kJ/mol, StericPenalty 21.5 to 10.5 and PolarLipoMismatchArea , 25 Å2
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list was inspected to select a diverse set of com-
pounds, rejecting those with potentially problematic
chemistries (e.g., potentially insoluble compounds),
resulting in a list of about 120 compounds.

A similar process was applied to the ligands binding
to the antagonist receptor. In this case, although
there are many high-scoring random ligands, only a
small proportion of these ligands have an appropri-
ate range of complementarity properties and 2-D
properties, and from a short list of 118 compounds
a manual selection of 32 compounds was made. Since
not all compounds were readily available from the
supplier, the final set comprised 37 compounds (21
from the agonist list, 16 from the antagonist list),
which were assayed in a standard competitive radio-
ligand binding assay.31

Of these 37 compounds, 21 exhibited an inhibition
constant (K i) of 300 nM (nanomolar) or less, with
the best compounds at 8 nM (Table 4). A set of con-
trol compounds, possessing similar drug-like features
but poor docking energies, were shown to be inac-
tive (,25 percent inhibition at the maximum assayed
concentration of 10 mM, or micromolar). Given the
structural novelty of the hits (compounds known to
possess estrogenic activity or to be structurally sim-
ilar to known ligands were excluded from assay), this
represents a very positive result, demonstrating that
virtual screening can readily identify potent ligands
from a variety of structural classes.

Analysis tools. The management and analysis of the
data generated within virtual screening is a problem
in its own right and one that parallels the problems
in data management faced by HTS scientists. In the
present example we saved five docked solutions for
each of the 1.1 million ligands against both forms of
the estrogen receptor, resulting in 11 million 3-D
models of ligand–receptor complexes, each supple-
mented by docked energies, component energies,
and other 2-D and 3-D descriptors.

Navigation of this large body of data is achieved by
using an in-house molecular graphics package de-
veloped to integrate interactive tools for data anal-
ysis, structure browsing, and subset selection. The
tools include, for example:

● Real-time display and navigation of very large data
sets, including molecular structures, property his-
tograms, and scatter plots

● Interactive subset selection using desired property
ranges

● Display of receptor-bound ligand structures, with
the ability to couple the viewing orientation of mul-
tiple receptors (e.g., to compare different ligand
sets in the same receptor or the same ligands bound
to different receptors)

● Calculation of additional properties, e.g., specific
receptor-based contact distances or measures of
3-D similarity in binding mode to a reference li-
gand (usually submitted as a background calcula-
tion)

The impetus behind the visualization software is the
need for an interactive platform to allow the mod-
eler to explore the property distributions, construct
various subsets based on different combinations of
selection criteria, and visualize the docked models
relating to the chosen subsets. Once the modeler is
confident about how best to analyze a particular data
set, the selection criteria can be automatically ap-
plied to other related data sets using the scripting
routines within Prometheus.

One advantage of constructing an in-house software
package is the degree of integration between differ-
ent modeling tasks that can be achieved. This inte-
gration contrasts with the environment usually en-
countered in industry, where a modeling group will
be running different codes from different sources to
perform the various tasks in library construction,
property profiling, docking, analysis, etc. For exam-
ple, within Prometheus the docking code produces
as output a single file of the best docked conforma-
tions of each ligand (in the MDL ISIS**, or Integrated
Scientific Information System, sdf format), which also
contains all the docked energies and other proper-
ties (such as receptor complementarity) calculated
during docking, as well as the 2-D properties calcu-
lated in the original preprocessing of the data set.
This sdf file comprises the basic input required for
the graphics visualization package, thus avoiding

Table 4 Binding affinities (Ki) against the human alpha-
estrogen receptor for 37 compounds selected
from the virtual screen

Binding Affinity Criterion Number of
Compounds

,10 nM 2
,100 nM 14
,300 nM 21
.25 percent inhibition* 27
None 37

*Percent inhibition at maximum assayed concentration (10 mM) for compounds
for which a full K i was not determined.
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problems of compiling and reformatting data from
different sources.

Timescales. A range of docking protocols were eval-
uated for the estrogen receptor to determine the
number of iterations (energy evaluations) required
to accurately dock known ligands. The preferred pro-
tocol docks a single ligand in approximately 30 sec-
onds on an SGI R10000** processor. Therefore, the
1.1 million data set took six days on a 64-processor
SGI Origin 2000**.

Docking protocols that we have optimized for other
receptors tend to be somewhat longer, e.g., we may
use a fivefold longer protocol (in terms of tabu
searching steps) for the enzyme thrombin. This
greater length reflects the nature of the receptor
site—enzymes such as thrombin tend to display a
more open (solvent exposed) binding site, with many
accessible subsites, not all of which are essential for
binding any particular ligand. In addition, some sub-
sites can consist of relatively deep or restricted pock-
ets and, therefore, the searching algorithm has a
more difficult task in locating the correct solution.
In contrast, the binding site of the estrogen recep-
tor consists of a single well-enclosed pocket that does
not accommodate many orientations or conforma-
tions of a ligand.

Docking methods such as PRO_LEADS that treat the
ligand as conformationally flexible are inevitably
slower than methods that keep the ligand rigid. How-
ever, exploring ligand flexibility allows a more ob-
jective and accurate prediction of the bound geom-
etry within the receptor and, therefore, the increased
cost in docking is justified by the quality of the pre-
dicted conformation and binding energy. The elapsed
time for the DockCrunch experiment (six days for
one receptor) is a very acceptable timescale for this
type of task within a drug discovery program, and
compares favorably with the start-up times required
in other areas of a screening program such as assay
automation and validation, compound acquisition,
or synthetic route finding and library synthesis (i.e.,
in a combinatorial chemistry program).

It should be mentioned that other hardware plat-
forms can achieve comparable or improved through-
put for virtual screening. For example, we have re-
cently installed a PC cluster running the Linux**
operating system, based on 100 Intel Pentium** III
750 MHz processors. This installation is an attrac-
tive solution for cost-effective computing in the
present example of receptor–ligand docking, since

this application is straightforward to parallelize
across a multiprocessor machine. Thus a daemon,
written in Perl and backed by a keyed database, dis-
tributes batches of ligands to as many individual pro-
cessors on the multiprocessor or cluster as the user
requires. Additional batches of ligands are automat-
ically launched as processors become free. This ap-
proach enables the modeler to readily manage machine
load, submit across heterogeneous architectures, and
track the progress of the job.

Conclusions

Virtual screening is increasingly gaining acceptance
in the pharmaceutical industry as a cost-effective and
timely strategy for analyzing very large chemical data
sets. Although the number of therapeutic targets that
have been fully characterized by crystallography is
currently limited, this situation is set to change sig-
nificantly in the immediate future as structural
genomics initiatives begin to yield fruit. Accordingly,
the work involved to validate all these potential tar-
gets, to demonstrate their therapeutic relevance, and
to find effective ligands will become heavily depen-
dent on the new high-throughput screening technol-
ogies.

We have used explicit molecular docking to yield de-
tailed models of over one million drug-like com-
pounds bound to two conformations of the human
estrogen receptor. This procedure is computation-
ally intensive for analyzing a large database but pro-
vides the most detailed basis for determining which
compounds are likely to be potent ligands. Our re-
sults demonstrate that the docking program can ac-
curately reproduce the known binding modes of ref-
erence ligands, and is capable of discriminating
between reference ligands and random compounds
on the basis of predicted binding affinity and other
structure-derived descriptors.

We have already demonstrated that existing (and
moderately inexpensive) hardware can perform a
very detailed computational analysis (molecular
docking) on data sets as large as a million com-
pounds. In the near future we can foresee that PC
clusters of a few hundred processors will be able to
process millions of compounds a week and to explore
selectivity across large families of structurally related
receptors. The successful integration of such anal-
yses with high-throughput library synthesis and eval-
uation will have a significant effect on the optimi-
zation of drug discovery strategies in coming years.
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