Ferreira M. M. C., Kiralj R., "CHEMOMETRIC INVESTIGATIONS OF MULTIDRUG RESISTANCE IN STRAINS OF THE PHYTOPATHOGENIC FUNGUS PENICILLIUM DIGITATUM". Moscow, Russia, 01-05/09/2007: Fourth International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources, Book of Abstracts (2007) 67. Oral OC-22.
OC-22
_____________________________________________________________________________________
CHEMOMETRIC INVESTIGATIONS OF  MULTIDRUG RESISTANCE 
IN STRAINS
OF THE PHYTOPATHOGENIC FUNGUS PENICILLIUM DIGITATUM
Márcia M. C. Ferreira, Rudolf Kiralj
Instituto de Química, Universidade Estadual de
Campinas,  Campinas 13083-862,  SP,  Brazil;
E-mail: marcia@iqm.unicamp.br
Demethylation   inhibitor  (DMI) 
resistance   by   pathogenic  fungi  
is  a  serious  problem  in
agriculture and medicine. P. digitatum (the green
mold) causes important postharvest  diseases
of  citrus fruits.  The  present work 
studies  P. digitatum  strains  (DMI-resistant, 
moderately
resistant  and  sensitive)  and 
4  DMIs  and  3  non-DMIs  by means of  Principal
Component
Analysis  (PCA)  and  Hierarchical Cluster
Analysis  (HCA)  and  Partial Least Squares  (PLS).
Novel types of relationships between toxicant structure
and fungal resistance,  and between the
resistance and fungal genome,  were established.
Biological  activity  datasets  for P.
digitatum   strains  with   respect  
to  DMIs  (triflumizole,
fenarimol,  bitertanol,  pyrifenox)  
and   non-DMIs  (cycloheximide,  4-nitroquinoline-N-oxide,
acriflavine)  were  generated  from 
experimental  EC50  (effective
inhibitory concentration  for
50% radial growth inhibition) and  MIC  (minimal
inhibitory concentration)  from literature [1].
The  datasets  contained:   pEC50
=
-log(EC50 / mol dm-3);  
pECr50 = pEC50(standard)
– pEC50;
descriptors (a, b, c, |a|,
|c|)  from regressions pMIC=a+b pEC50
and c=a/b for each toxicant;  8
and 16 morphological  descriptors  (radii,
circumferences and areas of fungal cultures)  for  the
growth   of   39   strains  
without   and   with   toxicant,  respectively;  
pEC50   from   multiple
measurements for  DMIs,  non-DMIs  and  
all  7  substances.  Genome  structure  descriptors
related to constitutive and toxicant-induced expression
levels of  CYP51  and  PMR1  genes 
in
diverse  P. digitatum  strains  
were   generated,   as  well  as  their 
products  with   molecular
descriptors  for  4 DMIs.  The  descriptors 
were  correlated   with   the  corresponding 
pEC50
activity  at  PLS  level,  
applying    leave-one-out   crossvalidation  
and   external   validation.
Novel  Activity-Structure  Relationships 
(ASRs)  resulted  from  exploratory  analyses 
of  the
activity  datasets.   Relationships 
between  toxicants  structure   and  strain 
features  (baseline
resistance, morphology, origin/target)  are 
visible,  can be rationalized and used in  predictions.
Quantitative  Genome-Activity Relationship  
(QGAR)   and   Quantitative  Genome/Structure-
Activity Relationship (QGSAR)  are novel relationships
between  pEC50  and  genome/toxicant
descriptors,  with s atisfactory  PLS 
statistics   (QGAR: 3PCs,  R=0.90,  Q=0.89,  SEV=0.34;
QGSAR:  5PCs,R=0.93, Q=0.92, SEV=0.286).  The
primary  contribution to  DMI resistance
comes  from  the  CYP51  gene, 
secondary  from the  PMR1  gene  and  
its  interaction  with
toxicants.  QGSAR  and  QGSAR  can
aid in detecting resistance strains of  P. digitatum 
and
development of novel antifungals.
The authors thank to FAPESP.
[1] Nakaune, R. et al., Mol. Genet. Genom. 2002,
267, 179 and references cited therein.
 
_____________________________________________________________________________________
CMTPI-200767