77.

Boffo E. F., Tavares L. A., Ferreira A. G., Ferreira M. M. C., Tobias A. C. T, "Determination of the authenticity of commercial coffees by application of chemometrics to 1H NMR and FT-IR spectra". Nottingham, UK, 16-19/07/2006: 8th International Conference on The Applications of Magnetic Resonance in Food Science, Online Book of Abstracts (2006). Poster.


Determination of the authenticity of commercial coffees by
application of chemometrics to 1H NMR and FT-IR spectra

Leila A. Tavares1, Elisangela F. Boffo1, Antonio G. Ferreira1 & Márcia M C. Ferreira2
 

 (1)Universidade Federal de São Carlos, São Carlos, SP, BR.
 (2)Universidade Estadual de Campinas, Campinas, SP, BR.

 giba@dq.ufscar.br
 
 

Coffee is  one of  the  most widely consumed beverages  in the world  and  Brazil  is  the
first  producer.  Its  quality  control  is difficult  because depends of the weather,  harvest
conditions,  species used, soil nutrients, etc and it can be also adulterated with cheaper
substitutes  like barley,  chicroy,  cereals,  malt,  maltodextrins,  caramelised  sugar,  etc
[1,2].
Many techniques have been investigated  to  tackle the problem  of  coffee  adulteration.
Spectroscopic  methods  such  as  NMR  and  FT-IR  than  can monitor a wide  range of
chemicals in  a  single spectrum  have been a great success.  However,  the richness of
this information makes the spectra  too  complex to be analysed  one by one and require
chemometric analysis to extract the useful information [3].
In order  to  verify which  methodology is better  to  determined  barley  addition  into the
coffees, multivariate analysis methods  were applied to  1H NMR and FT-IR spectra and
these   results   were  compared.   In  addition,   k-Nearst   Neighbour (KNN)   and   Soft
Independent  Modelling  of  Class  Analogy  (SIMCA)   were   used   and   compared   to
determine   the   sample   class,   and   Partial   Least   Squares  (PLS)   and    Principal
Component  Regression   (PCR)   were   used   to   determine   the  content   of   barley
addition into the commercial coffees using  the  Pirouette®  v. 2.02 program.
Considering the classification methods,   KNN  presented better efficiency than  SIMCA,
for  both techniques,   and  attributed correctly  100%  for the samples from an  external
validation group.  After this, the  models were  applied  to  predict  the  class  for  coffee
commercial samples.
The coffee content  for  the  pattern and commercial  samples  were  determined  using
PLS and PCR which showed similar predictions. When both methods were applied, the
NMR data results showed better with relative errors  5.3  and  5.6%  for  PLS and PCR,
respectively.   For  the  FT-IR  spectra  data we found  16.8  and  17.5%  for  the  same
samples used in the NMR
 
 

References:

[1]. Prodolliet, J. et al. Z. Lebensn Unters Forsch A, 1998, 207, 1.
[2]. Charlton, A. J. et al. J. Agric. Food Chem. 2002, 50, 3098.
[3]. Suchánek, M. et al. Fresenius J. Anal. Chem. 1996, 354, 327.
 
 
 
 
 
 

The 8th International Conference on the Applications of Magnetic Resonance in Food Science, 2006, Nottingham