81.

Teófilo R. F., Ceragioli H. J., Peterlevitz A. C., Baranauskas V., Ferreira M. M. C., Kubota L. T., "Optimization of voltammetric conditions for the determination of guaiacol and chloroguaiacol using boron-doped diamond electrode and RSM aproach". Águas de Lindóia, SP, Brazil, 10-15/09/2006: 10th International Conference on Chemometrics in Analytical Chemistry (CAC-2006, CAC-X), Book of Abstracts (2006) P008. Poster 008.


10th International Conference on Chemometrics in Analytical Chemistry P008

Optimization of voltammetric conditions for the determination of
guaiacol and chloroguaiacol using boron-doped diamond
electrode and RMS approach

Reinaldo F. Teófilo1*, Helde J. Ceragioli2, Alfredo C. Peterlevitz2, Vitor Baranauskas2,
Márcia M. C. Ferreira1, Lauro T. Kubota1  teofilo@iqm.unicamp.br

1-Instituto de Química, Universidade Estadual de Campinas
2-Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas

Keywords: guiacol, chloroguaiacol, boron-doped diamond, RSM
______________________________________________________________________________________
 

      The determination of phenol and its derivatives in the environement is  one of  the widespred  analytical
procedures due  to  their large use  in  industry and  due  to  their  wide toxicity to humans and most aquatic
organisms.  Phenols can also impart unpleasant taste  and  odor to drinking water and food products,  even
at  low  concentrations.   According to published works,   phenols  toxicity  and  organoleptic properties  are
manifested in the ppb range.   Thus,  there is a need for sensitive,  reproducible,  stable,  easy-to-use,  and
low-cost analytical methods for monitoring phenols and chlorinated phenols in water supplies1.   Among the
most sensitive  analytical  methods  to  detect and  quantify  phenols,   the  electroanalytical  methods  have
attracted very little attention in  the  literature despite the fact these methods potentially incur low costs and
employ fast analysis.   The  reason  for this limited use is probably due to the fact that sensitive  and  stable
electrochemical  detection  of   these  pollutants   is   usually  not   possible  with  most  electrode  materials
because  the  electrode  passivation.   Nevertheless,  in  recent  years,  boron-doped  diamond  (BDD)  has
demostrated  to  be  an attractive material for electroanalytical applications,   in view of tis unique properties
such as robustness,  chemical inertness,   resistance to electrode fouling,   wide potential window  and  low
background  current2.   Among the electroanalytical techniques  generally used,  square  wave voltammetry
(SWV)  has  proved  to  be  extremely sensitive  for  the detection  of  phenolic  compounds.   However,  the
utilization of  SWV  and  BDD belectrodes is not straightforward and a careful choice and optimization of the
experimental parameters is required to obtain a higher sensitivity.
      The aim of  this work was  the  optimization  of  the  voltammetric  conditions  using  Response  Surface
Methodology (RSM)3  approach for determination of guiacol and chloroguaiacol simultaneously using  BDD
electrodes and SWV.
      Guaiacol  and  chloroguaiacol  have  been  determined   to  be  recalcitrant,   toxic   to  aquatic  species,
genotoxic, lipophilic with propensity for bioaccumulation.
      BDD  electrode   was   grown  and   characterized   by   our  research  group.   SWV  experiments  were
performed  using  an  Autolab  potentiostat  (PGSTAT20).  Pt  wire  was  used as  counter electrode  and  a
saturated calomel electrode  (SCE)  as reference.  The  potential was scanned in the range from  0.5  up to
1.2 V.  Central Composite Design  (CCD)3  was used in a previous study.  The parameters employed in this
stage were: frequency (Freq), amplitude (Ampl) and pH.  Their levels are shown in  Table 1.  Step potential
was  2 mV.   The  concentration  for  both guiacol and chloroguaiacol  was  fixed  in  1.0x10-4  mol L-1.   The
measurements  were performed  in  5 ml  of  buffer McIlvaine  0.05  mol L-1.   A  cathodic  treatment  in  -3 V
during  3 s,  under vigorous agitation,  afer  at  least  5  sequential analyses,  was  carried  out  to  keep the
precision  of  measurements.    The  analyzed  response  (r)  was  obtained  in  accordance  with  equation:
r = (ip . w-1 . v-1/2).106,  where  i is  the  peak  current  in  ampere (A),  is  the  width  at  half peak height
and  v  is  scan rate (Vs-1).   pH  and  Ampl  were  significant  for  both  compounds  and  the  values  of  its
result indicated a displacement in the studied region.  Thus  a  Doehlert design with two variables (pH  and
Ampl)  was chosen to investigate the new region.   The studied levels for pH were  2.50,  2.87,  3.25,  3.62,
4.00 and for Ampl were 0.07, 0.085, 0.1 V.  The level for Freq was fixed in 35 Hz and the study was carried
out only with guaiacol, since both compounds replied linearly for the experiments using CCD.
      The  model:   r = 21.25  -  1.13 H + 0.84 Ampl  -  1.30 pH -  1.27 Ampl -  1.4 pHxAmpl   obtained  for
Doehlert design was significant for regression  and  not significant for  lack-of-fit  within a significance level,
a, of 0.05.  The analysis of surface response showed clearly that the best levels for variables studied were:
                                                                                                    pH  3.25,  Ampl  0.08  V   and Freq  35  Hz.
Table 1. Parameters and levels used in the CCD                      These  conditions provide  a  detection  limit
____________________________________________            of  7.3x10-7  mol  L-1  for  chloroguiacol  and
                                                                                                    3.2x10-7  mol L-1  forguaiacol.   The reached
                                  -1.682     -1         0        1     1.682            ppb  level   was    only    possible    due    to
                 ____________________________________          multivariate  data  analysis.
Ampl. (V)                             0.04       0.05      0.07     0.09      0.10
Freq. (Hz)                               10           20         35        50         60
pH                                         4.73       5.00      5.40     5.80      6.07
____________________________________________

Acknowledgment: The authors thank CNPq for financial support.

References

1 Muna G. W.; Quaiserova-Mocko V.; Swain G. M.; Anal. Chem. 2005, 77, 6542-6548.
2 Prado C.; Murcott G. G.; Marken F.; Foord J. S.; Compton R. G. Electroanal. 2002, 14, 975-979.
3 Teófilo R. F.; Ferreira M. M. C.; Quim. Nova 2006, 29, 338-350.