86.

Ribeiro J. S., Teófilo R. F., Augusto F., Ferreira M. M. C., "Exploratory data analysis of commercial coffees with different roasting degrees using chromatograms obtained from SPME-GC-FID". Águas de Lindóia, SP, Brazil, 10-15/09/2006: 10th International Conference on Chemometrics in Analytical Chemistry (CAC-2006, CAC-X), Book of Abstracts (2006) P027. Poster 027.


10th International Conference on Chemometrics in Analytical Chemistry P027

Exploratory data analysis of commercial coffees with different
roasting degrees using chromatograms obtained from
SPME-GC-FID

Juliano S. Ribeiro1,2*, Reinaldo F. Teófilo1, Fábio Augusto1 and Ferreira, M. M. C1
jribeiro@iqm.unicamp.br

1. Universidade Estadual de Campinas - UNICAMP - Campinas - SP - Brazil;
2. Instituto Agronômico de Campinas - IAC - Campinas - SP - Brazil;

Keywords: Coffee, gas chromatography, SPME
_____________________________________________________________________________________
 

    The characteristic flavor  of  coffee results  from  the  sensorial  impact  of  the  complex combination  of
volatile  and  non-volatile  chemicals present  in different concentrations.   Most  of  those compounds  are
formed  during  the  roasting  process of  the  green  coffee beans1,  especially  by  the  so-called  Maillard
reactions.   Due to the obvious importance  of  flavor  on consumer acceptance and quality perception, the
coffee’s  chemical composition  has  been intensively  studied2.   However,  due to its complex nature,  the
association of  the quality  of  roasted coffee  to  its volatile composition demands the use of chemometrics
methods for  data treatment.   In  the  present  work,   we  demonstrate that  Principal Component Analysis
(PCA)  allied to gas chromatographic data,   obtained after isolation and pre-concentraction  of  the volatile
fraction  of  roasted  coffee  by  using  Solid Phase Microextraction  (SPME),   could  be  an alternative  for
chemical classification of coffee samples.
    Samples and experimental conditions:   Triplicates of eighteen different Brazilian commercial coffees
were analyzed (seven of them were medium roasted and decaffeinated;  other six had normal roasting and
the  other  five were extra roasted  –  all of  them  from  different production batches).   The extraction  and
chromatographic conditions  were  optimized according to  the  literature.   Two fibers,  SPME coated  with
Carboxen/PDMS  and PDMS/DVB were employed.   Therefore,  two data sets were obtained  ([54 x 7501]
and [54 x 5100]).  Data processing was carried out  with  Matlab 6.5 software.  The raw chomatograms  for
both SPME fibers were aligned using COW (correlation optimized warping)3.  The data was meancentered
and variable selection was performed for better discrimination.

    The selected regions were:  PDMS/DBV- 1486-1822,  2237-2443, 2798-3004  and  3350-4040  (X = [54
x 1442]),  Carb/PDMS – 1548-2020, 2190-2480 and 3313-3800  (X = [54 x 1252]).   PCA  was applied and
revealed clusters according to  the coffee roasting process.   In the PC1xPC2 score plot  (Figure 1),  three
groups  of  coffees could be  clearly distinguished as follows:   The decaffeinated  coffee  (Desc)  samples
formed  one  separated cluster,  probably  not  only  due  to  roasting  but  also  to  the  caffeine  extraction
process.   The  other  two  groups  have  a  higher similarity degree  and  correspond  to  different roasting
processes – Traditional (Trad) and extra roasted (Exfo).  The exploratory data analysis clearly shows  the
potential  of  SPME-GC-FID  coupled   to   chemometrics   to   differentiate   commercial   roasted   coffees.
According  to  the  results,   any  of  the  two  SPME  fibers  could  be  used  separately  simultaneously  to
discriminate the roasted coffees by their flavor compounds.

Acknowledgment. Capes, FAPESP  and Agronomic Institute of Campinas
_____________________________________________________________________________________

References
1 Buffo, R. A., Cardelli-Freire, C., Flavour and Fragrance Journal, 19, 99-104 (2004);
2 Yeretzian, C., Jordan, A., Lindinger, W., Inter. J. Mass Spectrom., 223-224, 115-139 (2003);
3 Tomasi, G., Van der Berg, F., Andersson, C., J. Chemometrics, 18, 231 (2004);