90.

Figueiredo I. M., Reis F., Cendes F., Ferreira M. M. C., Marsaioli A. J., "Metabolites from Cerebrospinal fluid (CSF): Multiplesclerosis (MS) pattern-recognition applying 1H NMR and statistical methods". Águas de Lindóia, SP, Brazil, 10-15/09/2006: 10th International Conference on Chemometrics in Analytical Chemistry (CAC-2006, CAC-X), Book of Abstracts (2006) P073. Poster 073.


10th International Conference on Chemometrics in Analytical Chemistry P073

Metabolites from Cerebrospinal fluid (CSF): Multiplesclerosis
(MS) pattern-recognition applying 1H NMR and statistical
methods

Isis Martins Figueiredo1, Fabiano Reis2, Fernando Cendes2, Márcia M. C. Ferreira1*,
Anita J. Marsaioli1

1.  State University of Campinas,  Chemistry Institute,  PO Box 6154   and  2.   UNICAMP,  Department of
Neurology, FCM, Campinas-SP, 13083-970.

Keywords: Multiple sclerosis, 1H NMR, metabolomic, statistical methods
_____________________________________________________________________________________
 

    Metabonomics  is  increasingly  being  used   to  investigate  complex  body  fluid  composition  applying
several spectroscopic methodologies.  Among these,  high-resolution  1H NMR  spectroscopy coupled with
pattern recognition is a method  of  great success due to its ability  to quantify a large range of metabolites
simultaneously  without  preconceived  ideas  of  the  biomarkers  associated  with pathology.  The use  of
multivariate techniques such as  PLS-Discriminant  Analysis  on  a complex data provides a  statistical tool
for discriminating between spectra  from different classes of samples,   thus reducing the large numbers of
spectral features to key metabolic perturbations.
    In this study,  37  cerebrospinal fluid  (CSF) samples (25 from patients with multiple sclerosis  [MS]_and
12  from  disease  controls   -  idiopathic  polyneuropathy  and  meningitis)   were  examined  by   1H  NMR
spectroscopy and the data analyzed by multivariate statistics. The study was approved by our local Ethics
Committee  and  all  individuals  gave  informed  consent.    All  CSF  samples  were  collected  for  clinical
diagnostic purposes,  and  a  small portion of  the sample  was  kept  for  1H-NMR  analyses.  All  1H NMR
spectra  were  acquired  at  499.9 MHz  using  a  INOVA  500  spectrometer  (Varian)  and  a  5  mm  triple
resonance inverse probe.   Spectra were recorded  at  298 K  and  represented  the  sum  of  64  transient
acquired over64 K  data points with a spectral width of  10 kHz.   FID  were transformed using 1 degree of
zero filling and 0.5 Hz exponential multiplication.   The reference was 2.5 mM (TPS) at  m=0.0  was  added
(aqueous solution 100 ml, 2.5 mM)  to  the  CSF  sample (500 mL).   All  spectra  were  treated  prior  to the
multivariate statistics and pattern recognition by adjusting the TPS peak for possible shift and to  the same
height. Each speactum was basline corrected using  a linear fit and the final data set was autoscaled. The
1H NMR   spectra  demonstrated   resonance  arising   from  acetate,  alanine,   b-hydroxybutyrate, citrate,
formate, glucose, glutamine, glutamate, myo-inositol, isobutyrate,  lactate,  succinate,  tyrosine  and valine.
PLS-DA  demonstrated  that  CSF  from  MS  and disease control  patients  were  different with  increased,
glutamine, glutamate, b-hydroxybutirate and acetoacetate in patients with MS  (Figure 1a and b).   Scores
plot   (Figure  1c)   discriminates   the  group  with  MS  from  the  disease  control  group.   Leave-one-out
crossvalidation indicated only one misclassification.
    The increase in glutamine might be related  to  aminoacids  degradation,   while  b-hydroxybutirate  and
acetylacetate are  ketonic bodies which are an  alternative energetic route when glucose availability is low
or inefficient.

Figure 1.   Spectral profiles demonstrated  that  CSF  from MS and disease control patients were different
with increased a. b-hydroxybutirate and b.  glutamine, glutamate, and acetoacetate in patients with  MS c.
Scores plot  (PLS-DA)  discriminates the group with MS from the disease control group.
Acknowledgment. The authors are thankful to FAPESP for grants and support.
_____________________________________________________________________________________