116.

Bruni A. T., da Silva A. B. F., Ferreira M. M. C., Leite V. B. P., "Conformational Analysis of Omeprazole Family Compounds". Caxambu, MG, 23-26/11/2003: 12° Simpósio Brasileiro de Química Teórica (XII SBQT) [12th Brazilian Symposium of Theoretical Chemistry], Livro de Resumos [Book of Abstracts], (2003) P013. Poster P013



 
P013

CONFORMATIONAL ANALYSIS OF OMEPRAZOLE FAMILY
COMPOUNDS

Aline T. Bruni1 (PQ), Albérico B. F. da Silva2 (PQ), Márcia M. C. Ferreira3 (PQ),
Vitor B. P. Leite1 (PQ)
alinetb@df.ibilce.unesp.br
1DepartamentodeFísica-IBILCE-Institutode Biociências,LetraseCiênciasExatas,Universidade
Estadual Paulista, São José do Rio Preto - SP 15054-000, Brasil -
2DepartamentodeQuímicaeFísicaMolecular,InstitutodeQuímicadeSão Carlos,Universidadede
São Paulo, Av. do Trabalhador São-Carlense, 400 - Centro, São Carlos - SP 13560-970, Brasil
3InstitutodeQuímica-UniversidadeEstadualdeCampinas,CidadeUniversitária"Zeferino Vaz",
Barão Geraldo - Caixa Postal 6154 - Campinas - SP 13084-971, Brasil

Keywords: omeprazole, chemometrics, conformational analysis

               Many   problems   in   theoretical   medicinal   chemistry   studies    requires    previous
conformational analysis before evaluating the properties of a given set of molecules regarding to
their  biological  activity.    In  this  work,    two  sets  of  compounds  with  anti-Heliobacter pylori
(bacterium responsible for peptic ulcers)  activity  were  studied.   The former  set is  omeprazole
and its derivatives,   and the last one is the sulfide precursor  of  omeprazole and analogues   (2-
[[(2-Pyridyl)methyl]thio]-1H-benzilidazoles),  their  basic  structures are shown in Figure 1:
 


Figure 1. (a) Basic structure for omeprazole and its derivatives;
(b) Basic structure for 2-[[(2-Pyridyl)methyl]thio]-1H-benzilidazoles;
Rn = substituent.

            Conformational analysis  was performed using  a  method  which  finds  minimum  energy
structures.   This  method   associates   principal  component  analysis  with  quantum  mechanic
calculations.   It controls  the  combinatorial  explosion  inherent  to  the  conventional  systematic
search  by  a  dimensional   reduction  of  the  system  through  the  use  of  principal  component
analysis  [Bruni AT, Leit VBP, Ferreira MMC, J. Comp. Chem. 2002; 23: 222].  As result,   it  was
observed  that  small  differences  among  the  compounds  inside  each group provide important
changes  in the minimum energy structures.   Comparisons  between  the two sets of compounds
showed that the presence  of  a  S=O  group  for omeprazole and its derivatives was responsible
for significant differences  from  the respective precursor sulfide and analogues minimum  energy
structures.   The most important conclusion  is  observed  when the number  of  minimum  energy
structures for basic structure and  for the other molecules are compared.   If the  calculation  was
performed only on the basic structure,   followed by  the substituents addition,   all  the molecules
would  have  only  two  minimum  energy  structures   (number  found  for  both  basic  structures,
Fig. 1).   Nevertheless,   the  addition  of   each  substituent  prior   the  complete  conformational
analysis calculations is crucial in these studies,   because,  despite of all minimum conformations
have similar energetic values,   some calculated properties  used for further  SAR/QSAR  studies
can be very sensitive  to small structural variations   [Bruni AT, Ferreira MMC, J. Chemom. 2002;
16: 510].   (FAPESP/CAPES/CNPq).