118.

Kiralj R., Ferreira M. M. C., "Theoretical Study on Some b-Lactams as Substrates of the Bacterial Multidrug Resistance AcrB Pump". Caxambu, MG, 23-26/11/2003: 12° Simpósio Brasileiro de Química Teórica (XII SBQT) [12th Brazilian Symposium of Theoretical Chemistry], Livro de Resumos [Book of Abstracts], (2003) P149. Poster P149.



 
P149

THEORETICAL STUDY ON SOME b-LACTAMS AS
SUBSTRATES OF THE BACTERIAL MULTIDRUG RESISTANCE
ACRB PUMP

Rudolf Kiralj (PQ), Márcia M. C. Ferreira (PQ)
marcia@iqm.unicamp.br
Instituto de Química - UNICAMP, Campinas SP, 13084-971 Brazil.

Palavras-chave: b-lactam conformation, molecular mechanics, chemometrics

                AcrB pump  is  a  constitutive  part  of  the  most  important  multidrug efflux system  of
gram-negative bacteria,   which  excretes  a  variety of compounds from bacterial cytoplasm  and
periplasm   directly   to   the   cell   exterior   [1]. b-Lactam   antibiotics,   the  most  widely  used
antibacterial drugs,  are also substrates  of  this pump system.   This fact seriously increases the
problems in the  treatment of infectous diseases.
               Montecarlo  conformational search  was  performed  for  16   b-lactams (penicillins  and
cephalosporins,  Scheme)   and   their  geometry   was  optimized   at  semi-empirical   PM3  and
molecular mechanics MMFF94 level. Various geometric, electronic,  hydrogen bond,  topological
and  lipophilicity molecular descriptors  were  calculated.   Chemometric analysis through  Partial
Least Squares  (PLS)  regression models  was performed  for prediction of  b-lactam  efflux rates
(minimal inhibitor concentration, MIC)  caused by three distinct  Salmonella typhimurium  strains
[1].   Docking of selected drugs to the pore recognition site  (PRS)  of the  AcrB  crystal structure
from  Escherichi coli  [2]  at  MMFF94  level was also performed.
               It has been already confirmed that lipophilicity and charges in  b-lactam  molecules  are
important in their excretion by all bacterial strains,  and that these drugs were classified as good,
moderately good to poor, and bad AcrB substrates [3].   In this work,   parsimonius  PLS  models
were obtained (Q2 > 0.67, R2 > 0.79).  Several molecular descriptors were selected:  lipophilicity
(two log of octanol/water  partitition coefficients in linear and quadratic form;   surface fraction of
hydrophobic   carbon  atoms),   electronic   (number  fraction  of   heteroatoms;    second   order
hyperpolarizability;   average atomic  number in  R  and  R1  substituents)   and  hydrogen  bond
(average  number  of   hydrogen  bonds)  descriptors.    Both   the  experimental  and   predicted
activities pointed out  that liphophilic  and  amphiphilic  drugs  are  better  AcrB  substrates  than
hydrophilic  molecules.   Steric   (size/shape)   molecular  descriptors   did  not  exibit  significant
correlation  with biological activities,   what  agrees  with  the  docking  studies  where  the  pore
channel chains suffered  mostly  minor conformational changes.   Small  but visible  and  regular
changes occur in relative position of the highly polar residues at the PRS.   The  conformational
changes during  the  docking  are  remarkably  visible  in  docked  drugs,   due  to  hydrophobic-
hydrophobic,   polar-polar  and  hydrogen bond interactions  between  the drugs  and  the  PRS.
Thus,  the conformational changes  in the side chains R and R1,   and also in the  b-lactam  ring
provoke  variations  in  electronic properties,   and  enable  the  drug  binding  to  the  PRS   via
hydrogen bonds and polar-polar interactions. It can be concluded that electronic structure of the
drugs, directly and indirectly, rather than their molecular geometry,   determines the drug – AcrB
pump interactions.  (FAPESP)



Scheme. Penicillins and cephalosporins

[1] H. Nikaido et al., J. Bacteriol. 180 (1998) 4686.
[2] S. Murakami et al., Nature 419 (2002) 914.
[3] M. M. C. Ferreira, Kiralj, R., J. Bacteriol., submitted.