82.
Fernandes A. P., Santos M. C., Lemos S. G., Ferreira M. M. C., Nogueira A. R. A., Nóbrega J. A., "Pattern recognition applied to mineral characterization of Brazilian coffees and sugar-cane spirits", Spectrochim. Acta B, 60(5), 717-724 (Jun 2005).
[Article.]
 

Abstract.
Aluminium, Ca, Cu, Fe, K, Mg, Mn, Na, Pb, S, Se, Si, Sn, Sr, and Zn were determined in coffee and sugar-cane spirit (cachaça) samples by axial viewing inductively coupled plasma optical emission spectrometry (ICP OES). Pattern recognition techniques such as principal component analysis and cluster analysis were applied to data sets in order to characterize samples with relation to their geographical origin and production mode (industrial or homemade and organically or conventionally produced). Attempts to correlate metal ion content with the geographical origin of coffee and the production mode (organic or conventional) of cachaça were not successful. Some differentiation was suggested for the geographical origin of cachaça of three regions (Northeast, Central, and South), and for coffee samples, related to the production mode. Clear separations were only obtained for differentiation between industrial and homemade cachaças, and between instant soluble and roasted coffees.

Keywords.
Coffee; Sugar-cane Spirit; Chemometrics; Pattern Recognition.

Keywords Plus.