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a molecule. That the presence of 4n conjugated
circuits is detrimental to molecular stability has been
witnessed already for aromatic compounds in which
4n + 2 conjugated circuits dominate and enforce the
planar geometry for the systems in which 4n conju-
gatedcircuitsarealsopresent.HafnerandSchneider553

considered alkyl derivatives of aceheptylene and
observed that these compounds depart somewhat in
their properties from the “standard” non-benzenoid
conjugated systems. Clearly this “departure” is due
to the presence of anti-aromatic 4n contributing
conjugated circuits.

For a compound to qualify as anti-aromatic, how-
ever, we must have a dominant anti-aromatic con-
tribution. Hafner and co-workers655 designed a clever
way to arrive at anti-aromatic compounds by “forc-
ing” a molecule that has undergone the Jahn-Teller
distortion back into a more symmetrical geometric
form. This was accomplished by introducing bulky
tert-butyl substituents on the s-indacene skeletal
frame. Calculations done by Gellini et al.656 show that
CC bonds in s-indacene alternate in length, assuming
typical CC double (around 1.32-1.33 Å) and CC
single (1.47-1.49 Å) bond lengths, respectively, and
results in a structure having C2h symmetry. This
structure represents a more stable system than the
hypothetical structure without bond alternation (hav-
ing symmetry D2h). In contrast, calculations on
1,3,5,7-tetra-tert-butyl-s-indacene (TTBI) show that
the more stable system is the one with more equal-
ized peripheral CC bond lengths (around 1.40-1.41
Å), in agreement with the available X-ray data.
Hafner and co-workers, after careful analysis of
infrared and Raman spectra of 1,3,5,7-tetra-tert-
butyl-s-indacene, concluded that “The tert-butyl effect
on the TTBI structure results in a larger delocaliza-
tion of the π-electron density over the indacene plane,
giving rise to a molecular structure close to D2h
symmetry.” 656

Hence, because tert-butyl groups do not constitute
conjugated fragments and are ignored in the conju-
gated circuits model, we may conclude that “modi-
fied” s-indacene, that is, 1,3,5,7-tetra-tert-butyl-s-
indacene, represents an anti-aromatic species. More
recently, Baldridge and Siegel657 have theorized that
cyclooctatetraene (COT) can similarly be forced to
adopt a planar rather than a tub conformation. A flat
form for COT would make contributions from 4n
conjugated circuit be “felt” and thus would approach
an anti-aromatic structure. According to calculations,
the two annealed bicyclo[2.2.1]hexene fragments
would result in a planar structure that would have
localized π-electrons. Matsuura and Komatsu658,659

synthesized the compound, and indeed the X-ray
confirmed the calculations indicating the presence of
CC double bonds in the endo conformation with
respect to annealed bicyclo[2.2.1]hexeno fragments.
Adding four annealed fragments resulted in a planar
structure with exocyclic CC double bonds with re-
spect to the fragments. Finally, by placing annealed
bicyclo[2.2.1]hexeno fragments two bonds apart, one
prevents CC double bond “fixation”, and as a result
one obtains a fully anti-aromatic “modified” cyclooc-
tatetraene. These recent achievements show that

anti-aromaticity that was for the most part “ficti-
tious” is becoming “factual”.

An indirect “proof” that anti-aromatic compounds
are elusive comes from data on inter-stellar com-
pounds.660-662 In view of the low density of matter
and extremely low temperatures in outer space,
structures that would be difficult to observe in the
laboratory may have long enough life in the inter-
stellar space to be detected. Thus, for instance, among
others, the smallest aromatic compound, cyclic C3H3

+,
has been identified in the inter-stellar space. The
search for anti-aromatic compounds in the inter-
stellar space thus appears to be an interesting
project. However, as of today, no anti-aromatic
compounds have been detected in outer space,663

although, as is well known, the inter-stellar space is
rich in hydrocarbons.

In discussing aromaticity/anti-aromaticity, the prob-
lem that needs better understanding is why some
aromatic compounds (having 4n conjugated circuits)
have modified properties, as was the case with
Hafner’s hydrocarbons, and in other compounds, like
biphenylene, 4n conjugated circuits apparently do not
show a visible manifestation of the presence of 4n
conjugated circuits. We will address this problem in
section XXXII (Biphenylenes Revisited).

XXIV. ABC of Aromaticity
We can summarize the graph theoretical approach

to aromaticity by focusing on the three important
aspects pertaining to aromaticity: (A) classification
of compounds as fully aromatic or less aromatic; (B)
characterization of the degree of aromaticity of fully
aromatic compounds; and (C) discrimination of the
local aromatic features of larger compounds. We will
briefly outline each of these three important steps
for clarification of the concept of aromaticity as it
applies to polycyclic conjugated hydrocarbons. From
Table 39, which summarizes the ABC of aromaticity,
one can immediately see that all the three indices
are related. In particular, it follows that for aromatic
compounds A > 0, for azulene and so-called “azule-
noid” compounds, built from five- and seven-member
rings, B ) 0, while for rings not participating in
conjugated circuits and thus not contributing to
molecular RE, like the central rings of perylene and
bisanthene, C ) 0.

A. A of Aromaticity
As we have seen, aromaticity has been defined in

terms of the presence and the absence of 4n + 2 and
4n conjugated circuits. The approach has led to a
numerical index that estimates the degree of aroma-
ticity for compounds having both 4n + 2 and the 4n
conjugated circuits. It appears quite natural to expect

Table 39. ABC’s of Aromaticity

A )
RE(4n + 2) - RE(4n)
RE(4n + 2) + RE(4n)

aromaticity

B )
RE(R1) - RE(Rn*1)

RE(R1) + RE(Rn*1)
benzene character

C )
RRE(R1) - RRE(Rn*1)

RRE(R1) + RRE(Rn*1)
Clar index
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that an index of aromaticity is sensitive to the
relative roles of 4n + 2 and 4n conjugated circuits.
Construction of such an index is accomplished by
partitioning RE into contributions arising from 4n + 2
conjugated circuits, RE(4n + 2), and destabilizing
contributions arising from 4n conjugated circuits,
RE(4n). By following this reasoning, we arrive at the
index A given in Table 39.

The index A assigns the value A ) 1 to all
benzenoid hydrocarbons, which are thus all charac-
terized as “fully aromatic”. However, as we know,
there are variations of the degree of aromaticity even
among benzenoid hydrocarbons, though they may be
relatively small. We have already seen that “fully
benzenoid” hydrocarbons, like triphenylene, diben-
zopyrene, hexabenzocoronene, and other 6n π-elec-
tron systems, show unusual stability. Hence, we need
a measure of aromaticity that can differentiate
aromatic character among “fully aromatic” com-
pounds.

B. B of Aromaticity
In order to characterize these small variations of

aromatic features of benzenoid hydrocarbons, we
consider another index that will measure the degree
of similarity of a given benzenoid hydrocarbon to
benzene. Such an index, referred to as the index of
benzene character B of benzenoid hydrocarbons, was
proposed in 1987 as follows:664

Here, RE(R1) is the part of the computed resonance
energy that comes from the presence of the conju-
gated circuits R1, while RE(Rn*1) is the part of the
computed resonance energy that comes from the
presence all other conjugated circuits. The denomina-
tor, [RE(R1) + RE(Rn*1)], is in fact the total molecular
RE, which thus makes B a dimensionless number,
always less than one, except for benzene, for which
by definition B ) 1.

In Table 40 we have collected B indices for a
number of smaller benzenoid hydrocarbons. For
comparison, we also show the corresponding aroma-
ticity indices based on bond lengths. According to
Julg,665-667 one can derive an index of aromatic
character from the differences between the actual CC
bond lengths in a benzenoid hydrocarbon and the
average CC bond distance 〈d〉 using the expressions

The numerical value of index constructed in this way
will depend on the bond lengths used, which could
be experimental bond lengths or calculated ones. One
of the two Julg’s indices shown in Table 40 is based
on experimental CC bond lengths, and the other is
based on quantum chemical calculations using the
AM1 model (which is attributed to Dewar). As we can
see from Table 40, the magnitudes of the derived
indices based on bond lengths vary somewhat in a
relatively small interval, while graph theoretically

derived B indices vary in the interval from about 1/2
to 1, the largest possible value assumed to belong to
benzene. A comparison between the B index of
aromaticity and indices based on the approach of Julg
shows some differences for individual benzenoids. For
example, the B indices for naphthalene, perylene, and
quaterrylene, which are all formally built by con-
necting naphthalene units by essentially single CC
bonds, are the same. The Julg indices based on AM1
calculations for the same compounds show a decreas-
ing trend, the largest value belonging to naphthalene.
Clearly, the decrease of Julg’s index can be attributed
to the increase in the number of essentially single
CC bonds in perylene and quaterrylene, which do not
participate in conjugation but nevertheless influence
the average bond distance 〈d〉. For more details on
Julg’s bond length indices, the reader should consult
a recent paper by Kiralj and Ferreira668 on predicting
CC bond lengths in planar benzenoid polycyclic
hydrocarbons, where one can also find a list of over
300 experimental and calculated bond lengths for
some 27 smaller benzenoid hydrocarbons.

One can construct other indices for benzene char-
acter of benzenoid hydrocarbons, which we will
designate as B′ in order to differentiate them from
the index B. For example, one can consider the
Kekulé index,595 which assigns to individual Kekulé
valence structures an index derived from local prop-
erties of molecular orbitals, and take the average over
all Kekulé structures. Even though for many Kekulé
structures this index is bigger than the Kekulé index
of benzene, the average Kekulé index appears smaller
for polycyclic benzenoid hydrocarbons than it is for
benzene. However, for an index to reflect benzene
character, one expects certain trends among struc-
turally related benzenoids to be satisfied, such as

B ) [RE(R1) - RE(Rn*1)]/[RE(R1) + RE(Rn*1)]

J ) 1 - 255[Σ/〈d〉]2

Σ ) Σi[di - 〈d〉]2/N

Table 40. B Indices for a Number of Smaller
Benzenoid Hydrocarbons

Julg’s values

benzenoid B index exptl calcd (AM1)

benzene 1.000 1.000 1.000
naphthalene 0.751 0.932 0.928
anthracene 0.630 0.889 0.878
phenanthrene 0.778 0.878 0.928
tetracene 0.561 0.870 0.849
triphenylene 0.801 0.906 0.946
chrysene 0.734 0.848 0.922
pyrene 0.630 0.916 0.899
perylene 0.751 0.877 0.890
dibenzo[a,h]anthracene 0.742 0.972 0.906
picene 0.670 0.900 0.921
benzo[e]pyrene 0.712 0.877 0.890
pentacene 0.522 0.880 0.826
dibenzo[a,c]anthracene 0.796 0.891 0.915
dibenzo[fg,op]tetracene 0.800 0.881 0.944
benzo[ghi]perylene 0.649 0.875 0.921
coronene 0.585 0.955 0.933
quaterrylene 0.751 0.889 0.877
hexabenzocoronene 0.741 0.910 0.848
kekulene 0.690 0.877 0.881

B′(naphthalene) > B′(anthracene) >
B′(tetracene) > ...

B′(fully benzenoid hydrocarbons) >
B′(benzenoid hydrocarbons)

Aromaticity of Polycyclic Conjugated Hydrocarbons Chemical Reviews, 2003, Vol. 103, No. 9 3531



While the average Kekulé index satisfies the first
condition, it apparently fails to satisfy the second,
because B′(naphthalene) > B′(triphenylene), naph-
thalene having migrating π-sextets and triphenylene
being a fully benzenoid hydrocarbon.

Nevertheless, the Kekulé index, which assigns to
individual Kekulé valence structures a numerical
value, is of some interest, as it reflects the relative
importance of individual Kekulé valence structures,
a topic which has received some but apparently not
sufficient attention in the literature.

C. C of Aromaticity
Some caution is required when considering bigger

and bigger molecules, including benzenoid hydrocar-
bons, in which there could be considerable variations
in local properties. Already in smaller benzenoids,
such as perylene and bisanthene, in which the central
CC bonds are essentially single (that is, they are
single CC bonds in all Kekulé valence structures),
we have portions of a molecule that are not contrib-
uting to RE, and thence to aromaticity. By averaging
CC bond lengths, the contributions from various
rings, or the contributions from different Kekulé
valence structures, we may be diluting the aromatic
characteristics of a molecule with spurious contribu-
tions. It does appear that useful characterization of
benzenoid hydrocarbons may follow if we consider
individual benzene rings, rather than taking the
average of such contributions from all rings. This
leads us to a ring index which we refer to as C of
aromaticity, where C stands for Clar, which is defined
as539

RRE(R1) is the part of the computed ring resonance
energy of individual benzene rings that comes from
the presence of the conjugated circuits R1, while
RRE(Rn*1) is the part of the computed contribution
to the resonance energy for the considered ring that
comes from the presence of all other conjugated
circuits contributing to RE to the particular benzene
ring. The denominator [RRE(R1) + RRE(Rn*1)] is in
fact the total ring resonance energy (RRE), which
thus makes C a dimensionless number, always less
than one, except for benzene, for which by definition
C ) 1. In the next section we give numerical
examples of the RRE.

XXV. Local Aromaticity
It is not only among benzenoids that different

molecules show different degrees of aromatic char-
acter, but within single polycyclic conjugated hydro-
carbons, different rings show different local aroma-
ticities. Dewar explicitly mentioned extending the
notion of aromaticity criteria to individual rings in
polycyclic systems.669 The pioneering work on bridg-
ing the gap between calculated MO results and
characterization of local aromaticity of benzene rings
was attributed to Polansky and Derflinger,582 whose
work deserves more attention. They found some

justification for Clar’s model of localized benzenoid
regions in polycyclic conjugated benzenoids, and they
derived a ring index characterizing individual ben-
zene rings of a molecule. This ring index is deter-
mined from computed MO coefficients when the MO’s
of the system are expanded in sets of MO’s of each
ring. The “benzene character” for benzene rings of
numerous smaller benzenoid hydrocarbons reported
by Polansky and Derflinger was based on using the
HMO approach, but conceptually the approach is
quite general and can be extended to more sophisti-
cated MO calculations.

A. The Approach of Polansky and Derflinger
In the standard MO approach to conjugated hy-

drocarbons (e.g., in the HMO calculations), the mo-
lecular orbitals are expressed as a linear combination
of atomic orbitals. However, it is possible, as Polan-
sky and Derflinger outlined,582 to express the same
molecular orbitals in terms of molecular orbitals of
the benzene ring. As a result, instead of obtaining
information on the contributions of molecular orbitals
to the bond orders, one obtains the contributions of
a set of benzene orbitals to individual benzene rings
of polycyclic benzenoid hydrocarbons. In other words,
the “benzene character” described by Polansky and
Derflinger, “is the projection of occupied π-MO’s in a
given hexagon L of a polycyclic benzenoid hydrocar-
bon onto the three occupied MO’s of a benzene
molecule located on that position.” 523

In Figure 92 we illustrate for a collection of smaller
benzenoid hydrocarbons the benzene ring indices as
reported by Polansky and Derflinger.582 The results
are quite interesting, if not astounding. As one can
see, there are considerable variations among indi-
vidual rings within a molecule and between rings in
different molecules. If we ignore diphenyl and
hexaphenyl, in which benzene rings are bridged by
a single CC bond rather than fused, and in which
higher values for the ring indices were found than
in benzene, the ring indices of Polansky and Der-
flinger are smaller than the value for benzene,
varying between about 0.680 to 0.950. Observe also
that the variations are more pronounced in some
molecules than others. A more careful examination
of the results of Polansky and Derflinger shows that
the aromatic character of individual rings is far from
uniform. Moreover, the variations show some antici-
pated and some unexpected regularities. As a rule,
terminal rings in benzenoid hydrocarbons show
greater similarity to benzene, suggesting that the
local aromaticity may be influenced to a considerable
degree by specifics of molecular periphery patterns.
Highly significant are the observed large differences
in benzene character among many adjacent rings.
This is particularly visible in the cases of tri-
phenylene (6/92), tetrabenzanthracene (15/92), diben-
zopyrene (13/92), and hexabenzocoronene (20/92).
Observe that all the mentioned benzenoids are those
that Clar classified as “fully benzenoid”. In compari-
son with rings in other benzenoids shown in Figure
92, they all show a large benzene character for
benzene rings which are the sites of aromatic π-sex-
tets. It is significant vindication for Clar’s model of

C ) [RRE(R1) - RRE(Rn*1)]/
[RRE(R1) + RRE(Rn*1)]

3532 Chemical Reviews, 2003, Vol. 103, No. 9 Randić
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